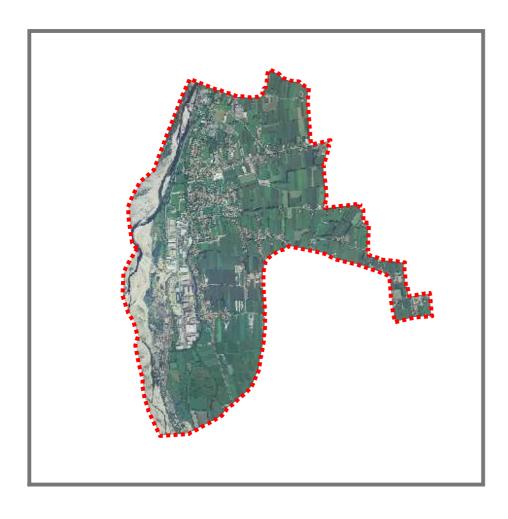
COMUNE DI CARTIGLIANO Provincia di VICENZA

P.A.T.

Elaborato

d05

01



Scala

Relazione Compatibilità Idraulica

Adottato con Deliberazione di Consiglio Comunale n. del Approvato in sede di Conferenza dei Servizi del

Il Sindaco Germano Racchella

Il Segretario Comunale Dott. Fulvio Brindisi

Il Responsabile dell'Ufficio Urbanistica ed Edilizia Privata *Geom. Walter D'Emilio*

Provincia di Vicenza

Indagini Specialistiche: Dott. Geol. Luigi Stevan

REGIONE DEL VENETO

PROVINCIA DI VICENZA

COMUNE DI CARTIGLIANO

VALUTAZIONE DI COMPATIBILITÀ IDRAULICA

Riguardante il "Piano di Assetto del Territorio"

Emissione		MARZO 2014

Sommario

1	Pi	remessa	3
2	In	quadramento generale	4
	2.1	Caratteristiche geografiche e morfologiche	4
	2.2	Assetto idrografico	4
	2.3	Assetto idrogeologico	7
	2.4	Caratteristiche meteo climatiche	9
	2.5	Pericolosità idraulica del territorio	.12
	2.6	Fasce di rispetto e vincoli idraulici	.18
3	D	escrizione degli interventi previsti dal PAT	20
	3.1	Caratteristiche generali	.20
	3.2	Previsioni di Piano	.22
4	D	efinizione delle misure compensative	27
	4.1	Introduzione	.27
	4.2	Analisi idrologica	.27
	4.3	Calcolo della portata di piena	.29
	4.4	Superfici oggetto di trasformazione	.31
	4.5	Calcolo del volume di invaso	.31
	4.6	Risultati e schede di sintesi	.33
5	In	dicazioni di carattere generale	35
	5.1	Interferenze con le reti di distribuzione irrigua	.37
6	B	ibliografia	39

Allegati

- 1. Elenco degli interventi di Piano con indicazione dei volumi di compensazione
- 2. Schede relative agli interventi

1 Premessa

Il presente studio di compatibilità idraulica valuta le interferenze che le nuove previsioni urbanistiche contenute nel "Piano di Assetto del Territorio" del Comune di Cartigliano possono avere con eventuali dissesti idrogeologici ed idraulici e le interazioni che la realizzazione delle opere previste può causare al regime idraulico.

In particolare vengono esaminate quelle aree del territorio comunale che saranno soggette, secondo le previsioni di piano, ad alterazioni e/o variazioni dell'uso del suolo con particolare riferimento a quelle nelle quali è previsto un aumento della percentuale di impermeabilizzazione del terreno.

Lo studio fornisce i criteri da seguire per le future trasformazioni, oltre che il dimensionamento delle opere di compensazione e/o mitigazione.

Esso segue le indicazioni riportate nell'Allegato A, "Modalità operative e indicazioni tecniche", parte integrante della D.G.R. n.2948 del 6 ottobre 2009; la vigente normativa regionale prevede infatti che le scelte urbanistiche, fin dalla loro impostazione, tengano conto delle indicazioni espresse nella Valutazione di Compatibilità Idraulica per quanto riguarda le interferenze delle nuove proposte edificatorie con le caratteristiche dei terreni interessati.

Le nuove destinazioni urbanistiche o le trasformazioni d'uso del suolo dovranno essere confrontate con eventuali dissesti idraulici in atto o potenziali ed essere valutata l'ammissibilità di eventuali alterazioni del regime idraulico della zona.

Le analisi sono state svolte anche con riferimento alle aree per le quali il vigente P.R.G. prevede delle trasformazioni territoriali che, ad oggi, non sono ancora state attuate.

Inquadramento generale

Caratteristiche geografiche e morfologiche

Il territorio comunale di Cartigliano si trova a poco più di 22 km a nord est di Vicenza, circa 4 km a sud delle colline del Marosticano, ai piedi dell'Altopiano dei Sette Comuni (F. 37 III S. E. tav. "Marostica" e F. 37 II S.W. "Rosà", nella cartografia I.G.M.).

Esso si colloca, a quote comprese tra 61 e 91 m, nel settore nord orientale della Provincia, adiacente la sponda sinistra del fiume Brenta, nella zona dell'alta pianura alluvionale; la sua superficie territoriale è di 7,38 km². Confina a nord con Bassano del Grappa, ad est con Rosà, a sud con Tezze sul Brenta e con Pozzoleone, ad ovest con Nove.

Figura 1. Inquadramento geografico del territorio comunale di Cartigliano.

Assetto idrografico 2.2

2.2.1 Inquadramento

Dal punto di vista idrografico, il territorio comunale di Cartigliano ricade all'interno del bacino nazionale del Brenta-Bacchiglione.

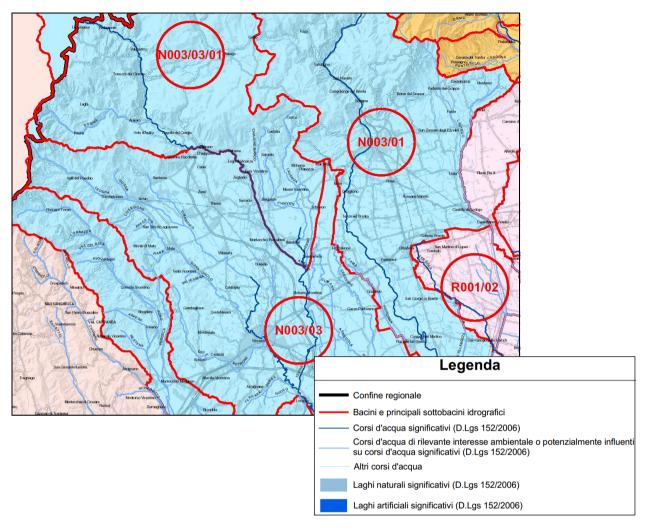


Figura 2. Stralcio della Tav.2.1 "Carta dei sottobacini idrografici" – Piano di Tutela delle Acque della Regione Veneto. N003/03/01 Brenta: Astico-Tesina; N003/03 Brenta: Bacchiglione; N003/01 Brenta: Veneto.

2.2.2 Il fiume Brenta

Il Brenta si origina dal lago di Caldonazzo, a quota 450 metri e sfocia in Adriatico a Brondolo. La lunghezza dell'asta dalle origini a Bassano del Grappa è di 70 km circa mentre lo sviluppo totale fino alla foce è di quasi 174 km.

Tra gli affluenti del fiume Brenta, il più importante è il torrente Cismon, sia perché ha un bacino imbrifero di estensione pressoché uguale a quello del Brenta alla confluenza con lo stesso Cismon, sia per la notevole piovosità che lo caratterizza, integrata dai contributi derivanti dallo scioglimento di ghiacciai e nevi nelle parti più elevate del bacino.

A Vigodarzere il Brenta riceve il torrente Muson dei Sassi, altro corso d'acqua di significative dimensioni.

Presso il nodo di Padova esiste un complesso rapporto tra Brenta e Bacchiglione, con possibilità di interscambio delle loro acque (canali Brentella, San Gregorio e Piovego).

Agli effetti idrografici, il bacino imbrifero del Brenta può considerarsi chiuso a Bassano del Grappa (1.567 km²), dove il fiume inizia a scorrere nell'alveo alluvionale di pianura.

In particolare il Brenta, nella parte a monte di Bassano, fruisce dell'apporto di acque provenienti da altri bacini imbriferi per via sotterranea. La più importante di tali sorgenti è quella che origina l'Oliero, breve corso d'acqua, alimentato da sorgente carsica, che confluisce da destra a valle di Valstagna.

Sull'intero bacino montano del Brenta la precipitazione media annua è dell'ordine di 1.300 millimetri (variabile da 1.000 a 2.000 mm), che corrisponde ad un volume medio di circa 2 miliardi di metri cubi all'anno; le capacità di accumulo attraverso serbatoi artificiali sono attualmente di circa 150 milioni di metri cubi, pari a solo il 7% dell'afflusso medio annuo.

Le portate sono caratterizzate da un'estrema variabilità, assestandosi su un valore medio di circa 60 m³/s, con minime estive di circa 30 m³/s; La massima storica (evento del novembre 1966 ha registrato 2800 m³/s.

Il rischio idraulico è localizzato sia a nord di Bassano, sia poco a monte di Padova (e per la stessa città), sia nel tratto terminale, dal piovese fino alla foce.

Oltre alla problematica del rischio idraulico, è da evidenziare quella dei numerosi utilizzi della risorsa idrica, come quello idropotabile, irriguo, idroelettrico e gli utilizzi industriali.

Il fiume Bacchiglione 2.2.3

Il fiume Bacchiglione, è costituito dall'alveo collettore di un sistema idrografico assai complesso, formato da corsi superficiali, che convogliano acque montane e da rivi perenni originati da risorgive. Il fiume nasce dall'unione di 2 distinti sottosistemi idrografici: il primo è originato dalla risorgenze del Bacchiglione propriamente detto, situate in comune di Dueville, che danno origine ad un corso d'acqua denominato nel suo primo tratto Bacchiglioncello, mentre il secondo è costituito dal sottobacino del Leogra-Timonchio che raccoglie le acque di una piccola parte della zona montana vicentina e di una buona parte della pianura scledense. La confluenza delle aste principali di questi 2 sottosistemi è situata poco a monte della città di Vicenza e da qui il fiume inizia il suo percorso assumendo il nome di Bacchiglione.

2.2.4 Rete idrografica secondaria

La rete idrografica superficiale è rappresentata solo da rogge e canali irrigui. Già a partire dal medioevo divenne infatti pressante la domanda d'acqua, in relazione alle progressive acquisizioni di beni comunali da parte del patriziato veneziano e della nobiltà locale. Era necessario adacquare il territorio per rendere la campagna meno arida e sterile ma anche per sostenere l'allevamento. Anche l'istanza energetica era ben presente: le biade andavano infatti macinate e per far ciò occorrevano ruote idrauliche. Successivamente, con il progressivo

Comune di Cartigliano – Piano di Assetto del Territorio Emissione: Marzo 2014 pag. 6

nascere in terraferma di varie tipologie di manifatture che lavoravano lane, sete, carta, legname, altre ruote idrauliche si resero necessarie per alimentare magli, seghe, cartiere, etc..

È in questo contesto che nel territorio in esame si sviluppò una fitta rete di canali artificiali, denominati rogge, i quali, prelevando acqua dal fiume Brenta, la portavano in tutta la campagna circostante. Nel corso del tempo questa rete idraulica minore si sviluppò progressivamente, ramificandosi in canali secondari, terziari e di ordine ancora superiore, divenendo complessa per l'intersezione di una roggia con l'altra e portando acqua fin nelle più piccole particelle di terreno. Si costituì in tal modo la base dell'attuale attività di bonifica e di irrigazione.

Nella campagna orientale tale sistema era rappresentato da sette canali che traevano origine dalla sponda sinistra del Brenta a partire da Bassano: poco a valle del "Ponte Vecchio" infatti erano localizzate le opere di presa della roggia Rosà e, più a valle, si diramavano le rogge Morosina, Dolfina, Bernardi, Remodina, Trona e Michela.

Il territorio di Cartigliano ricade ora nel comprensorio del consorzio di bonifica "Pedemontano Brenta" con sede a Cittadella. Il comprensorio si estende a cavallo del fiume Brenta, tra i massicci del Grappa e dell'Altopiano di Asiago a Nord, il fiume Bacchiglione a Sud, il fiume Astico-Tesina a Ovest ed il sistema del torrente Muson dei Sassi ad Est. La superficie complessiva, pari a 70'933 ettari, interessa 54 Comuni delle 3 Province di Padova, Treviso e Vicenza, per una popolazione stimata pari a 250'000 abitanti

Assetto idrogeologico 2.3

L'assetto strutturale del sottosuolo, legato al succedersi degli eventi geologici locali, si presenta in questa zona in forma assai semplice: sul substrato roccioso costituito dall'antica superficie d'erosione, che dalle vicine colline terziarie va rapidamente immergendo verso sud, si sono via via depositati sedimenti provenienti dai rilievi circostanti, rimaneggiati dall'azione di mobilizzazione e risedimentazione operata dai corsi d'acqua, in larga prevalenza il Brenta, che in fasi successive hanno divagato su quest'area.

L'insieme delle ricerche specialistiche e degli studi svolti fino ad ora permettono di considerare il materasso alluvionale così formatosi sostanzialmente uniforme, costituito essenzialmente da ghiaie e ghiaie sabbiose, con intercalazioni di sedimenti più fini (limi) a limitata estensione areale, dovute a locali e temporanee diminuzioni di energia cinetica da parte dei corsi d'acqua.

È noto che nel sottosuolo di tutta l'alta pianura veneta le alluvioni ghiaiose alloggiano una potente falda di tipo non confinato, la cui alimentazione prevalente trae origine dalle ingenti dispersioni in alveo, che si verificano allo sbocco dei fiumi dalle valli montane. Tale fenomeno agisce costantemente in ricarica, a favore dell'acquifero, divenendo più marcato nel corso dei regimi idrometrici di piena, durante i quali transitano negli alvei portate idriche sufficienti a

garantire che lo scambio tra ambiente fluviale e falde sotterranee avvenga con la massima

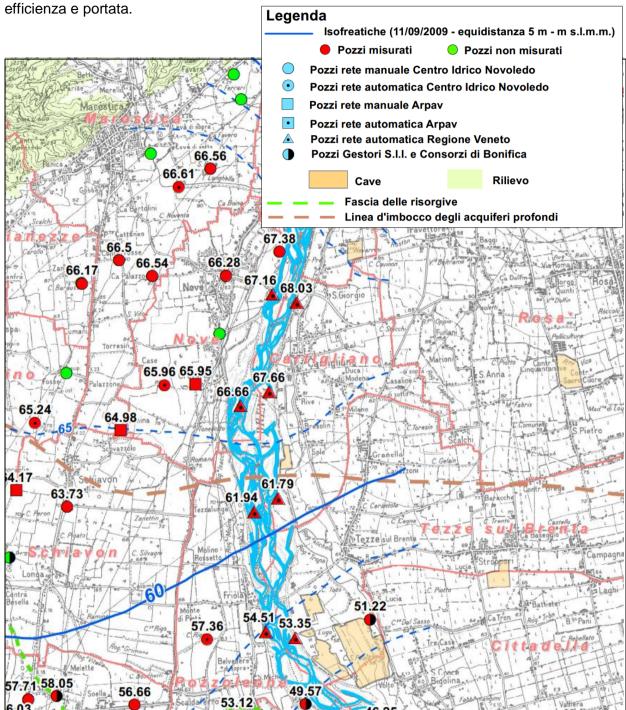


Figura 3. Carta ad isofreatiche tratta da "Freatimetria dell'Alta Pianura Vicentina", relativa a misurazioni condotte nel settembre 2009 (livelli di falda medi, in fase di discesa).

L'analisi del campo di moto della falda, derivata da numerose misurazioni effettuate negli anni, permette di formulare le seguenti considerazioni di sintesi:

fino all'altezza di Fontaniva circa il Brenta esercita un'azione disperdente a favore dell'acquifero freatico;

- il fiume in tutta questa fascia di alta pianura rappresenta il fattore di alimentazione per l'acquifero di maggiore importanza:
- le direzioni prevalenti dei deflussi sotterranei manifestano in sinistra idrografica un'orientazione di tipo NNO-SSE, mentre in destra la direttrice di scorrimento è all'incirca meridiana: il fatto è spiegabile su base litostrutturale, dal momento che in destra il materasso ghiaioso è di spessore relativamente modesto (serbatoio freatico) e poggia su uno strato limoso argilloso a giacitura suborizzontale;
- in sinistra, al contrario, il bedrock dell'acquifero si approfondisce rapidamente immergendo a SE e determinando anche un aumento di gradiente della falda:
- nei due settori citati e se pur con peculiarità distinte, la superficie freatica degrada in maniera omogenea secondo un'inclinazione inizialmente più accentuata ed a seguire più debole;
- il gradiente idraulico medio locale risulta pari al 1 ÷ 3 ‰, con i valori massimi nei pressi delle aree in fregio all'asta fluviale;
- la falda nel tratto tra Bassano e Friola Camazzole si mantiene costantemente a quote più basse rispetto a quelle idrometriche del corso d'acqua e, poiché il letto del Brenta incide materiali molto permeabili, si verificano cospicue e continue perdite dal fiume verso la falda secondo linee equipotenziali molto ravvicinate tra loro.

Dai dati bibliografici disponibili si può dedurre che localmente la superficie libera della falda oscilla mediamente attorno a 10 ÷ 20 metri di profondità dal piano campagna. Il regime freatico è contraddistinto in genere da una piena autunnale e da una magra che ha luogo a fine inverno, con escursioni massime di circa 8 ÷ 9 metri.

2.4 Caratteristiche meteo climatiche

2.4.1 Caratteristiche generali

Analizzando i valori medi delle temperature medie e delle precipitazioni annue sul territorio regionale a partire dalla data di attivazione delle stazioni ARPAV (dal 1985 in poi) e fino al 31 dicembre 2009, e le considerazioni in merito ai fattori a macroscala, a mesoscala e a microscala influenti sul clima del Veneto, è possibile evidenziare tre zone mesoclimatiche principali: pianura; prealpi e settore alpino.

Il territorio in esame ricade nella fascia di pianura, caratterizzata da un certo grado di continentalità, con inverni relativamente rigidi ed estati calde. Le temperature medie di quest'area sono comprese fra 13°C e 15°C. Le precipitazioni sono distribuite abbastanza uniformemente durante l'anno e con totali annui mediamente compresi tra 600 e 1100 mm, con l'inverno come stagione più secca, le stagioni intermedie caratterizzate dal prevalere di perturbazioni atlantiche e mediterranee e l'estate con i tipici fenomeni temporaleschi.

Nell'ambito del territorio comunale di Cartigliano la precipitazione media annua è pari a circa 1200 mm.

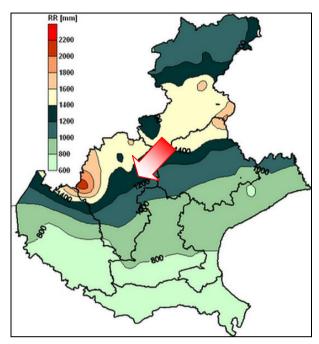


Figura 4. Mappe delle precipitazioni annue medie (isoiete). Periodo 1985 – 2009. Fonte: ARPAV.

2.4.2 Tendenze in atto

L'analisi dei dati riguardanti il periodo 1956-2004 ha permesso di fare alcune considerazioni sull'evoluzione del clima nella regione, evidenziando eventuali cambiamenti climatici sul territorio veneto, in particolare la tendenza alla diminuzione delle precipitazioni invernali, come è visibile dal confronto tra le mappe relative ai periodi 1961-1990 e 1991-2004.

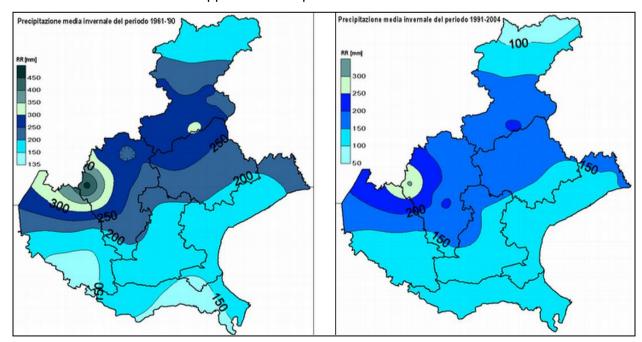


Figura 5. Precipitazioni medie invernali per i periodi 1961-1990 (a sinistra) e 1991-2004 (a destra). Fonte: ARPAV.

Attualmente, sul territorio italiano, è in corso un aumento delle temperature massime e minime giornaliere, collegato ad un aumento della temperatura media e coerente con l'aumento della frequenza delle ondate di calore (triplicatasi negli ultimi anni).

Dall'analisi dei dati elaborati, risulta che sul territorio italiano è in corso una lieve diminuzione delle precipitazioni totali, una significativa diminuzione del numero di giorni piovosi, mentre la frequenza di quelli con precipitazioni intense è in aumento in alcune regioni dell'Italia settentrionale (Triveneto, Piemonte, Lombardia, Emilia Romagna).

In generale, la diminuzione degli eventi di bassa intensità e l'aumento degli eventi più intensi è il sintomo di una estremizzazione della distribuzione delle precipitazioni. Si osserva, in definitiva, una tendenza generale, nelle regioni settentrionali, ad una diminuzione del contributo relativo alle precipitazioni di bassa intensità ed un aumento degli eventi più intensi.

Pericolosità idraulica del territorio

Eventi storici 2.5.1

Il territorio di Cartigliano, come del resto quello bassanese, si formò in seguito alle numerose e devastanti alluvioni del Brenta. La prima memorabile inondazione che la storia ricordi risale al 589 d.C, all'epoca dell'invasione longobarda. Nell'autunno di quell'anno una tremenda alluvione causata da straordinarie piogge si abbatté sulla nostra penisola, sconvolgendo il corso di diversi fiumi sopratutto nel Veneto.

Il Brenta, rotti i suoi naturali argini, straripò dal suo letto e dilagò per la campagne circostanti, trovando sistemazione definitiva nell'alveo che ancora oggi lo accoglie; ne rimase cambiato perfino il corso del fiume: prima scorreva a est di Cartigliano e da allora fluì a ovest.

Tra gli eventi alluvionali documentati che nel passato hanno interessato il bacino idrografico del Brenta-Bacchiglione, i più critici per altezza del livello idrico e durata dell'evento sono quelli del settembre 1882 e del novembre 1966.

L'esondazione del Brenta, del Bacchiglione e dei suoi affluenti provocò l'allagamento della città di Vicenza e di vaste zone di pianura situate a settentrione.

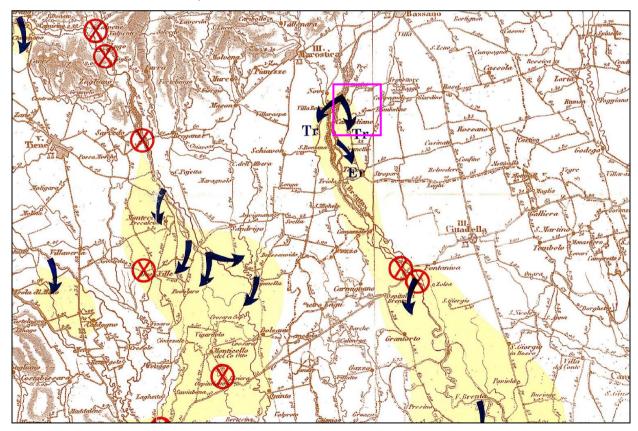


Figura 6. Stralcio della "Carta dell'evento alluvionale dell'autunno 1882", redatta dal Consiglio Nazionale delle Ricerche; in evidenza la zona in cui ricade il territorio comunale di Cartigliano.

In occasione dell'evento alluvionale del novembre 1966, il Bacchiglione ed alcuni dei principali affluenti provocarono l'allagamento di vaste aree del territorio vicentino. In particolare il Retrone e l'Astichello, impossibilitati a scaricare nel Bacchiglione per gli elevati livelli idrometrici del fiume, superarono gli argini sondando nella parte ovest e nord della città di Vicenza. Il Bacchiglione in località Cresole e Vivaro causò una rotta arginale di circa 150 m ed il crollo di due ponti. Il Tesina, invece, ruppe gli argini in sinistra, a Bolzano Vicentino ed a Marola, causando l'inondazione dei territori dei Comuni ad est ed a nord-ovest di Padova.

Figura 7. Il Brenta durante l'evento del 4-6 novembre 1966, in corrispondenza del ponte che collega Nove a Cartigliano (tratto da:"Nove in bianco e nero").

Progetto di Piano Stralcio per l'Assetto Idrogeologico (PAI) 2.5.2

Lo strumento programmatico di riferimento è rappresentato dal Piano Stralcio per l'Assetto Idrogeologico (PAI) dei bacini dei fiumi Isonzo, Tagliamento, Piave e Brenta-Bacchiglione, adottato con delibera n.3 del 09/11/2012 dal Comitato Istituzionale dell'Autorità di bacino e pubblicata nella GU n.280 del 30/11/2012.

Il Piano ha valore di piano territoriale di settore ed è lo strumento conoscitivo, normativo, tecnico-operativo mediante il quale sono pianificate le azioni e le norme d'uso riguardanti l'assetto idraulico ed idrogeologico del bacino.

Il Piano si prefigge l'obiettivo di garantire al territorio del bacino un livello di sicurezza adeguato rispetto ai fenomeni di dissesto idraulico e geologico, attraverso il ripristino degli equilibri idraulici, geologici ed ambientali, il recupero degli ambiti fluviali e del sistema delle acque, la programmazione degli usi del suolo ai fini della difesa, della stabilizzazione e del consolidamento dei terreni.

Il Piano contiene, sulla base delle conoscenze acquisite:

- l'individuazione e perimetrazione delle aree di pericolosità o rischio geologico ed idraulico;
- le opportune indicazioni relative a tipologia e programmazione preliminare degli interventi di mitigazione o eliminazione delle condizioni di pericolosità;
- le norme di attuazione e le prescrizioni per le aree classificate secondo i diversi gradi di pericolosità.

Per il territorio comunale di Cartigliano, il PAI non evidenzia alcuna area caratterizzata da pericolosità idraulica, ma una serie di "zone di attenzione idraulica", che derivano dal quadro conoscitivo ed in particolare dai Piani Territoriali di coordinamento Provinciale, da studi recenti eseguiti dall'Autorità di bacino e dalla perimetrazione delle aree allagate in occasione dell'alluvione del novembre 2010.

Si riportano di seguito gli stralci della Tavola 26 del PAI, che riguardano il territorio comunale di Cartigliano. Si rileva che la cartografia vigente, aggiornata al 30/07/2013, considera l'area golenale del Brenta come "Zona di attenzione idraulica" mentre la Cartografia che presenta la "Proposta di aggiornamento delle previsioni di Piano" definisce l'area fluviale, senza evidenziare zone di attenzione.

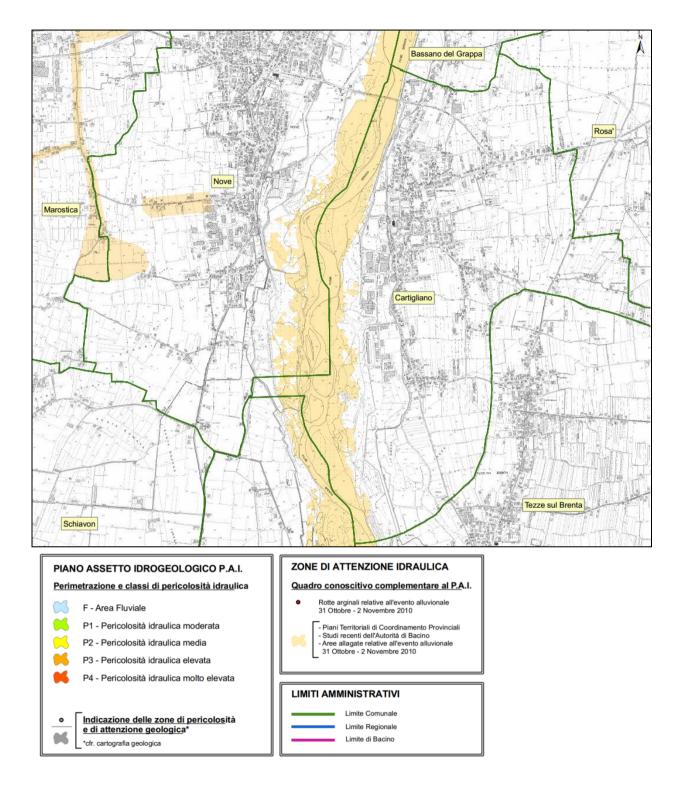


Figura 8. Cartografia del Piano di Assetto Idrogeologico (Tav. 26) – Decreto Secretariale n.2015 del 30/07/2013.

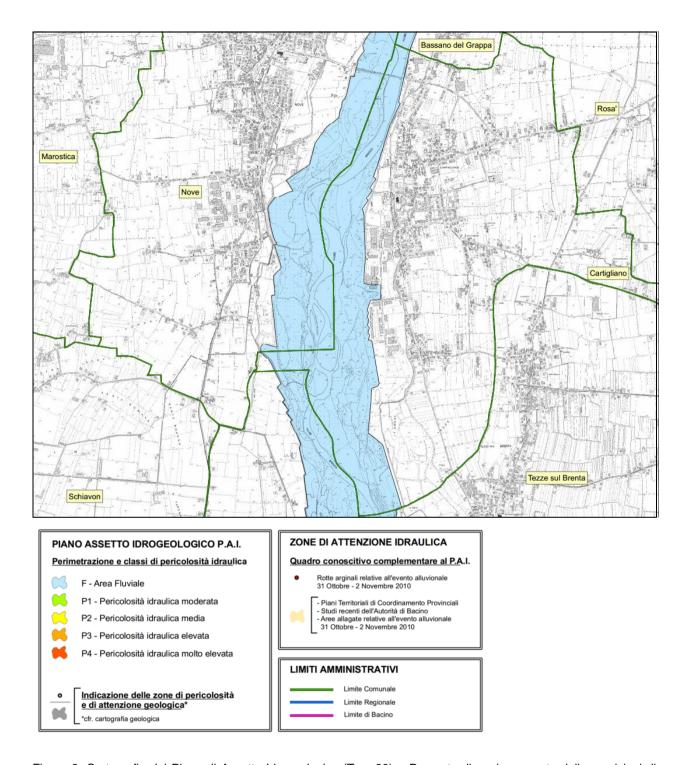


Figura 9. Cartografia del Piano di Assetto Idrogeologico (Tav. 26) - Proposta di aggiornamento delle previsioni di piano.

Le aree interessate dal PAT in esame non ricadono in nessuna delle "zone di attenzione idraulica" individuate dal PAI. Si ritiene opportuno riportare un estratto delle Norme Tecniche del PAI riguardanti la disciplina delle aree fluviali.

ART. 13 - Disciplina delle aree fluviali

- 1. Nelle aree fluviali, richiamate le disposizioni di cui all'art. 8, sono escluse tutte quelle attività e/o utilizzazioni che diminuiscono la sicurezza idraulica e, in particolare, quelle che possono:
 - a. determinare riduzione della capacità di invaso e di deflusso del corpo idrico fluente;
 - b. interferire con la morfologia in atto e/o prevedibile del corpo idrico fluente;
 - c. generare situazioni di pericolosità in caso di sradicamento e/o trascinamento di strutture e/o vegetazione da parte delle acque.
- 2. Le coltivazioni arboree o pluriennali con strutture di sostegno fisso, esistenti alla data di adozione del presente piano (01/12/2012) e i nuovi impianti sono ammessi, previa autorizzazione della Regione competente, se gli stessi non recano ostacolo al deflusso delle acque e all'evoluzione morfologica del corso d'acqua e rispondono ai criteri di compatibilità idraulica. Il rinnovo per completare il ciclo produttivo in atto al momento della scadenza dell'autorizzazione potrà essere consentito in deroga (se opportunamente motivato).
- 3. Nelle aree fluviali, gli interventi di qualsiasi tipo devono tener conto della necessità di mantenere, compatibilmente con la funzione alla quale detti interventi devono assolvere, l'assetto morfodinamico del corso d'acqua. Ciò al fine di non indurre a valle condizioni di pericolosità.

Nelle aree fluviali è consentita, previa acquisizione dell'autorizzazione idraulica della Regione e nel rispetto dei criteri di cui al comma 1:

- a. la realizzazione degli interventi finalizzati alla navigazione, compresa anche la nautica da diporto;
- b. la realizzazione, ampliamento o manutenzione delle opere di raccolta, regolazione, trattamento, presa e restituzione dell'acqua;
- c. la realizzazione, ampliamento o manutenzione di strutture a rete e di opere di attraversamento stradale, ciclopedonale e ferroviario. Le nuove opere vanno realizzate a quote compatibili con i livelli idrometrici propri della piena di riferimento tenuto conto del relativo franco di sicurezza;
- d. l'installazione di attrezzature e strutture, purché di trascurabile ingombro, funzionali all'utilizzo agricolo dei suoli nelle aree fluviali.

ART. 14 - Preesistenze nelle aree fluviali

- 1. La Regione, su istanza del proprietario o di chi abbia il titolo per richiederlo, verifica l'esistenza delle condizioni per consentire l'esecuzione degli interventi di difesa e/o di mitigazione del rischio necessari ad assicurare l'incolumità delle persone e per la razionale gestione del patrimonio edilizio esistente, autorizzandone la realizzazione.
- 2. E' consentita la trasformazione d'uso di vani collocati al di sopra della quota di sicurezza idraulica, allo scopo di ridurre la vulnerabilità del patrimonio edilizio ed infrastrutturale esistente.
- 3. Possono essere realizzati, previa autorizzazione idraulica della Regione, esclusivamente interventi di:

- a. demolizione senza ricostruzione;
- b. interventi di manutenzione ordinaria, straordinaria, restauro e risanamento conservativo riguardanti edifici, strutture ed infrastrutture, purché non comportino incremento di unità abitative o del carico insediativo;
- c. interventi di adeguamento degli edifici esistenti per motivate necessità igienico-sanitario, per il rispetto della legislazione in vigore anche in materia di abbattimento delle barriere architettoniche, di sicurezza del lavoro e incremento dell'efficienza energetica;
- d. interventi di ampliamento degli edifici esistenti, purché non comportino mutamento della destinazione d'uso, né incremento di superficie e di volume superiore al 10% del volume e della superficie totale, e siano compatibili con la pericolosità del fenomeno nonché realizzati al di sopra della quota di sicurezza idraulica, e non comportino incremento di unità abitative o del carico insediativo:
- e. sistemazioni e manutenzioni di superfici scoperte di edifici esistenti;
- f. realizzazione di locali accessori di modesta entità a servizio degli edifici esistenti.
- g. adeguamenti strutturali e funzionali di impianti per la lavorazione degli inerti solo nel caso in cui siano imposti dalle normative vigenti, o per migliorare le condizioni di sicurezza idraulica, o per consentire la razionale gestione dell'apparato produttivo;
- h. adeguamento strutturale e funzionale di impianti di depurazione delle acque reflue urbane, imposte dalla normativa vigente; l'eventuale ampliamento è subordinato alla verifica preliminare, da parte della Regione, che non sussistono alternative al riposizionamento dell'impianto, né che l'impianto induca modifiche significative al comportamento idrodinamico del corso d'acqua, nonché variazioni significative dei livelli del corso d'acqua;
- i. adeguamento di impianti produttivi artigianali o industriali solo nel caso in cui siano imposti dalle normative vigenti, o per migliorare le condizioni di sicurezza idraulica, o per consentire la razionale gestione dell'apparato produttivo;

ART. 16 – Principi generali per la redazione dei nuovi strumenti urbanistici o di loro varianti a quelli esistenti

Negli strumenti urbanistici generali, al fine di limitare gli afflussi nelle reti idrografiche delle acque provenienti dal drenaggio delle superfici impermeabilizzate mediante pavimentazione o copertura, devono essere adottate misure idonee a mantenere invariati i deflussi generati dall'area oggetto di intervento.

2.6 Fasce di rispetto e vincoli idraulici

Vengono di seguito ribaditi i vincoli idraulici principali, relativamente alle fasce di inedificabilità e rispetto idraulico lungo i corsi d'acqua principali classificati, nel caso in esame il fiume Brenta, secondo quanto previsto dalle disposizioni vigenti di polizia idraulica (Regio Decreto 368/1904 e s.m.i.). In particolare:

Emissione: Marzo 2014 Valutazione di Compatibilità idraulica - Relazione pag. 18

- 1. Per i fiumi classificati qualsiasi intervento o modificazione della configurazione esistente all'interno della fascia dei dieci metri dal ciglio superiore della scarpata o dal piede della scarpata esterna dell'argine esistente, sarà soggetto, anche ai fini della servitù di passaggio, secondo quanto previsto dal titolo IV (disposizioni di polizia idraulica) del Regio Decreto 368/1904 e s.m.i, e dovrà quindi essere specificatamente autorizzato a titolo di precarico, fermo restando che dovrà permanere completamente sgombra da ostacoli o impedimenti una fascia di larghezza paria 4 m da entrambi i lati e che sono assolutamente vietate nuove edificazioni a distanza inferiore a 10 m.
- 2. Per quanto riguarda la tutela dei corsi d'acqua si farà comunque riferimento alle fasce di vincolo e tutela riportate nell'Elaborato "Carta dei Vincoli e della Pianificazione Territoriale", nella quale sono riportati il vincolo principale dei 10 metri ed il vincolo di rispetto secondario come tutela ambientale (100 mai sensi della lett. g, Art. 41 della L.R. 41/2004) e paesaggistica (150 m ai sensi del D. Lgs. 42/2004).

Per i corsi d'acqua di proprietà e/o gestiti dai Consorzi di Bonifica dovranno essere rispettate anche le norme contenute nel "Regolamento Consorziale per la Conservazione e la Polizia delle Opere di Bonifica e le loro Pertinenze", approvato dalla Giunta della Regione Veneto in data 01/12/1998. L'ente potrà ammettere deroghe alla distanza dei 10 m solo su presentazione di progetti e relazioni tecniche che ne giustifichino la necessità e fattibilità.

Descrizione degli interventi previsti dal PAT

Caratteristiche generali

Il Piano di Assetto del Territorio (PAT), redatto sulla base di previsioni decennali, fissa gli obiettivi e le condizioni di sostenibilità degli interventi e delle trasformazioni ammissibili: per ambiti territoriali omogenei (ATO), vengono fissati i parametri teorici di dimensionamento, i limiti quantitativi e fisici per lo sviluppo degli insediamenti ed i parametri per i cambiamenti di destinazione d'uso.

La strategia insediativa definita per i diversi ambiti, le caratteristiche ambientali, paesaggistiche, geologiche ed agronomico-forestali, insieme con gli obiettivi di salvaguardia dell'integrità del territorio, quidano all'individuazione dei limiti fisici alla nuova edificazione. In tal senso deve essere accertata anche la compatibilità degli interventi con la sicurezza idraulica del territorio dal momento che potrebbe risultare necessario subordinare l'attuazione di talune progetti alla realizzazione di interventi per la gestione delle acque meteoriche.

Il PAT provvede a suddividere il territorio comunale in tre Ambiti Territoriali Omogenei, individuati per specifici contesti territoriali sulla base di valutazioni di carattere geografico, storico, paesaggistico ed insediativo. A tali porzioni di territorio il PAT attribuisce i corrispondenti obiettivi di tutela, riqualificazione e valorizzazione, stabilisce inoltre le aree idonee per interventi diretti al miglioramento della qualità urbana e territoriale, i parametri teorici di dimensionamento, i limiti quantitativi e fisici per lo sviluppo degli insediamenti residenziali, industriali, commerciali, direzionali, turistico-ricettivi e i parametri per i cambi di destinazione d'uso, perseguendo l'integrazione delle funzioni compatibili.

Il territorio di Cartigliano viene suddiviso in:

- ATO 1 con prevalenza dei caratteri del sistema agricolo, turistico, ambientale, paesaggistico e produttivo;
- ATO 2 con prevalenza dei caratteri del sistema agricolo;
- ATO 3 con prevalenza dei caratteri del sistema insediativo residenziale;
- ATO 4 con prevalenza dei caratteri del sistema agricolo e ambientale.

Il sistema insediativo è composto da un impianto originario sviluppatosi storicamente e dalla sovrapposizione o accostamento di processi di espansione edilizia più recenti.

L'impianto storico, ancora leggibile, è costituito da un centro insediativo a tessuto lineare. La viabilità principale, in direzione nord-sud, rappresenta l'elemento generatore dal quale si dirama una fitta rete di strade verso la campagna circostante.

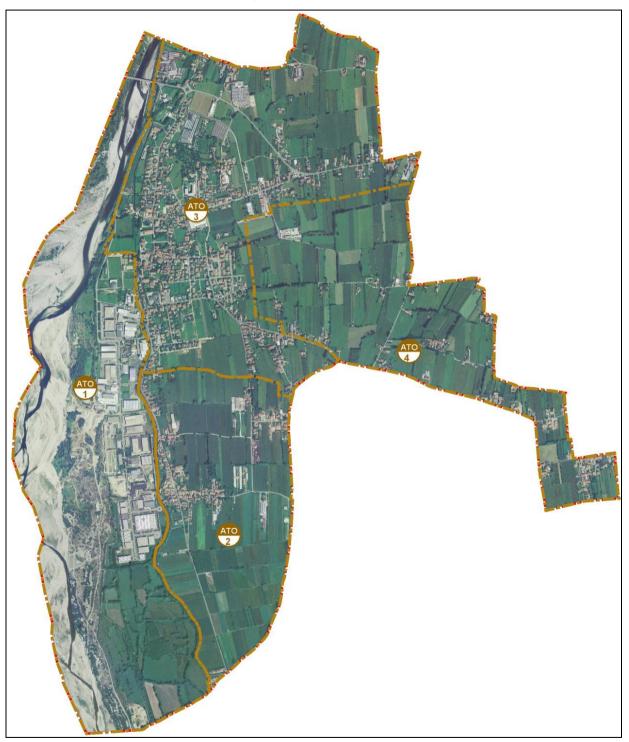


Figura 10. Individuazione degli ATO nell'ambito del territorio comunale di Cartigliano.

All'unità urbana del centro si contrappongono le corti rurali, nuclei insediativi sparsi, legati principalmente all'attività agricola, che trovano collocazione lungo la viabilità minore e che costituiscono l'altra forma edificata del sistema insediativo comunale.

Il PAT, per quanto concerne il sistema insediativo residenziale, prevede, dopo una verifica dell'assetto fisico e funzionale degli insediamenti, il miglioramento della funzionalità degli stessi e della qualità della vita all'interno delle aree urbane, definendo per le aree degradate gli interventi di riqualificazione e di possibile riconversione per le parti e gli elementi in conflitto funzionale, individuando le eventuali fasce o elementi di mitigazione.

Per quanto riguarda il sistema produttivo, il PAT individua le possibili aree di espansione con riferimento alle caratteristiche locali e alle previsioni infrastrutturali a scala territoriale e ne definisce il dimensionamento.

Le nuove superfici produttive sono previste solamente in ampliamento ad aree esistenti, realizzate in continuità e in aderenza ad esse, in ragione del ridotto impatto ambientale ed in conformità alle esigenze manifestate.

3.2 Previsioni di Piano

3.2.1 ATO 1

Non sono previste trasformazioni in questo Ambito Territoriale Omogeneo.

3.2.2 ATO 2

In questo Ambito Territoriale Omogeneo sono individuate 5 aree di trasformazione, come riportato nella tabella seguente ed evidenziato nella Figura 11.

АТО	area	superficie (m²)	destinazione		
2	2 11 3.424		Servizi ed attrezzature di interesse comune		
2	14	2.879	Residenziale		
2	16	2.001	Residenziale		
2	18	2.921	Produttiva		
2	19	3.608	residenziale		

Tabella 1. Principali caratteristiche delle trasformazioni previste nell'ATO 2.

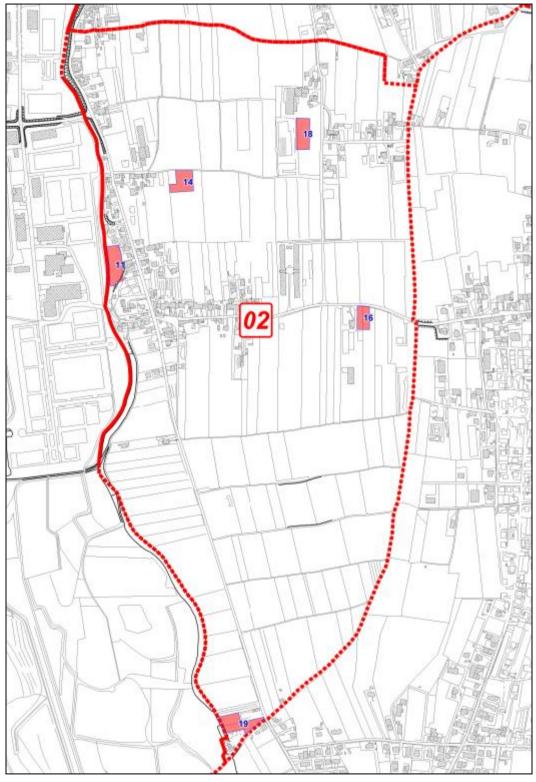


Figura 11. ATO 2 – Aree oggetto di trasformazione.

3.2.3 ATO 3

In questo Ambito Territoriale Omogeneo sono individuate 16 aree di trasformazione, come riportato nella tabella seguente ed evidenziato nella Figura 12.

ATO	area	superficie (m²)	destinazione
3	1	13.038	Produttiva
3	2	7.883	Residenziale
3	3	3.238	Residenziale
3	4	8.423	Residenziale
3	5	13.297	Residenziale, commerciale, direzionale, servizi e funzioni compatibili
3	6	8.336	Residenziale, commerciale, direzionale, servizi e funzioni compatibili
3	7	9.488	Residenziale
3	8	12.451	Residenziale, commerciale, direzionale, servizi e funzioni compatibili
3	9	4.298	Residenziale
3	10	9.137	Residenziale
3	12	1.549	Residenziale
3	13	2.778	Residenziale
3	15	2.045	Residenziale
3	17	3.113	Residenziale
3	25	5.207	Residenziale
3	26	6.316	Residenziale

Tabella 2. Principali caratteristiche delle trasformazioni previste nell'ATO 2.

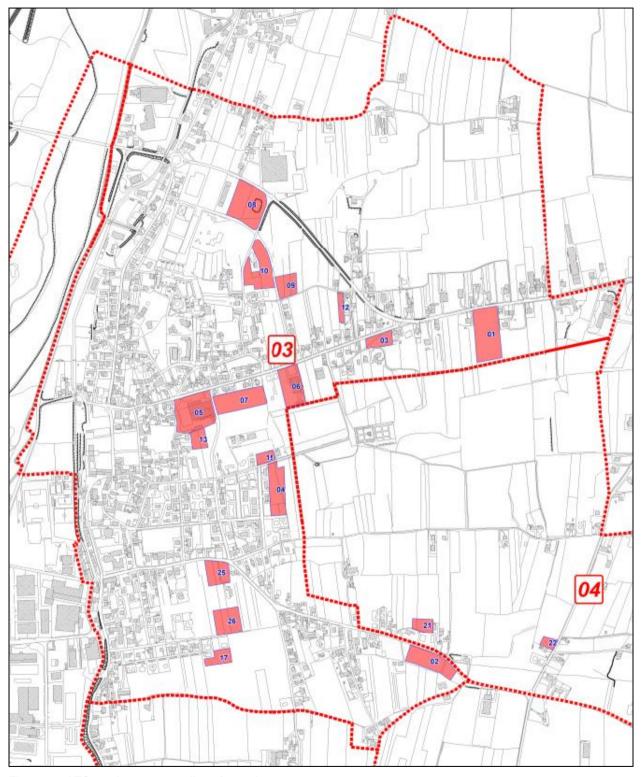


Figura 12. ATO 3 – Aree oggetto di trasformazione.

pag. 25

ATO 4 3.2.4

In questo Ambito Territoriale Omogeneo sono individuate 5 aree di trasformazione, come riportato nella tabella seguente ed evidenziato nella Figura 13.

ATO area		area	superficie (m²)	destinazione
	4 21 2.631		2.631	Produttiva
	4 22 1.579		1.579	Residenziale
	4	23	1.914	Residenziale
	4	20	2.760	Residenziale
	4 24 2.545		2.545	Residenziale

Tabella 3. Principali caratteristiche delle trasformazioni previste nell'ATO 4.

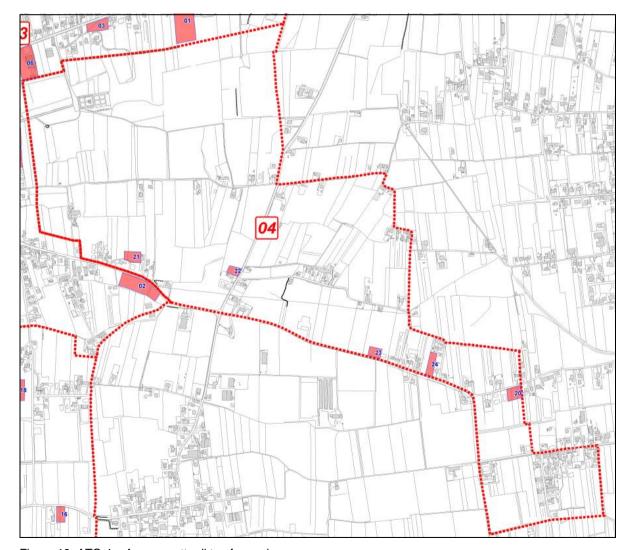


Figura 13. ATO 4 – Aree oggetto di trasformazione.

Definizione delle misure compensative

Introduzione

L'impermeabilizzazione delle superfici e la loro regolarizzazione contribuisce in modo determinante all'incremento del coefficiente di deflusso ed al consequente aumento del coefficiente udometrico delle aree trasformate. Secondo la normativa vigente, in particolare la D.G.R. 2948 del 6 ottobre 2009, ogni trasformazione dell'uso del suolo che provochi una variazione di permeabilità superficiale deve quindi prevedere misure compensative volte e mantenere costante il coefficiente udometrico secondo il principio dell'invarianza idraulica. Per definire tali misure è necessario quindi valutare la portata di piena allo stato attuale e secondo le previsioni di piano.

Analisi idrologica 4.2

Per la definizione del regime pluviometrico, si fa riferimento alle informazioni bibliografiche ufficiali, ed in particolare allo studio redatto dall'Autorità di Bacino dell'Alto Adriatico in merito al dimensionamento delle opere idrauliche. Questo studio è giunto alla regionalizzazione delle precipitazioni di durata variabile tra 1 ora e 5 giorni dimostrando inoltre la sua applicabilità anche per precipitazioni di breve durata e notevole intensità (durata inferiore ad 1 ora).

In sintesi le relazioni da utilizzare per l'analisi regionale delle precipitazioni devono essere combinate in modo da ottenere una equazione del tipo:

$$h = f(x, t, Tr)$$

che fa dipendere esplicitamente l'altezza dell'afflusso meteorico h, dalla posizione geografica del luogo x interessato dall'opera di difesa, dalla durata della pioggia t, e dal tempo di ritorno Tr ad essa associato. L'equazione di possibilità pluviometrica che per effetto regionalizzazione assume l'espressione:

$$h=H(x)\cdot[1+0.35\cdot Y(Tr)]t^{n(x)}$$

dove:

- H(x) = parametro della regionalizzazione funzione della posizione del luogo;
- n(x) = parametro della regionalizzazione funzione della posizione del luogo;
- Tr = tempo di ritorno;
- Y(Tr) = variabile ridotta di Gumbel = -ln (-ln (1-1/Tr));
- h = altezza di precipitazione (mm);
- t = durata della precipitazione (ore).

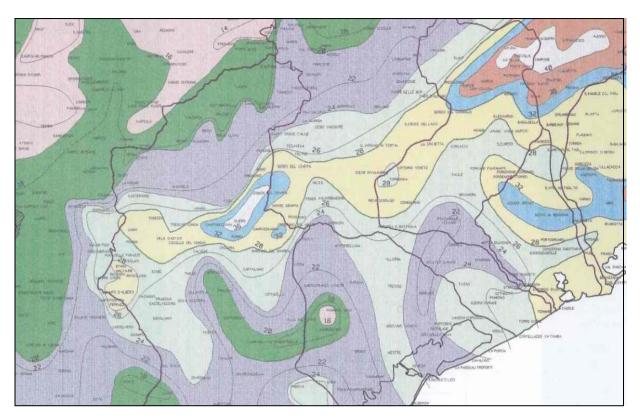


Figura 14. Estratto dalla "Regionalizzazione delle precipitazioni estreme" per H(x).

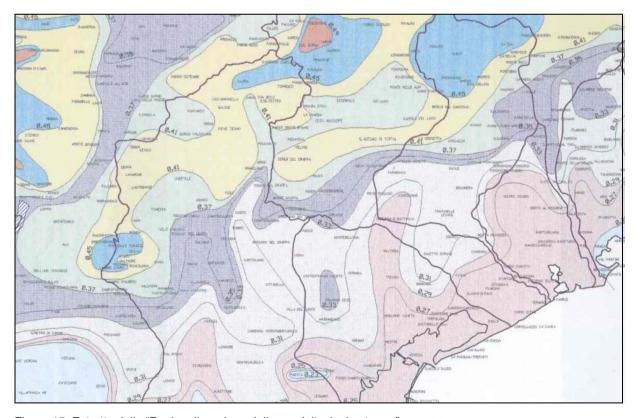


Figura 15. Estratto dalla "Regionalizzazione delle precipitazioni estreme" per n(x).

Comune di Cartigliano – Piano di Assetto del Territorio Emissione: Marzo 2014 Valutazione di compatibilità idraulica - Relazione pag. 28

Nel caso del territorio del Comune di Cartigliano (H(x)=26; n(x)=0.31) si ottiene:

$$h = 26 \cdot [1 + 0.35 \cdot Y(Tr)] \cdot t^{0.31}$$
 e quindi:

 $h=61.50*t^{0.31}$ per Tr = 50 anni

 $h=67.86*t^{0.31}$ per Tr = 100 anni

 $h=74.19*t^{0.31}$ per Tr = 200 anni

Calcolo della portata di piena 4.3

4.3.1 Metodo utilizzato

Per il calcolo delle portate di piena generate dalle singole aree si è fatto riferimento al metodo razionale secondo la classica relazione: $Q = \varphi \times J \times S$, dove la portata Q corrisponde al prodotto dell'intensità di pioggia J=h/t della superficie S del bacino scolante e del coefficiente di deflusso φ che rappresenta il rapporto tra l'afflusso che raggiunge il recapito finale e l'effettivo afflusso meteorico.

4.3.2 Stima dei coefficienti di deflusso di progetto

Il coefficiente di deflusso può essere calcolato come valore medio, relativo alle caratteristiche di φ_i nelle superfici componenti S_i del bacino di scolo S, per cui:

$$\varphi = \frac{\sum_{i} \varphi_{i} \times S_{i}}{S}$$

Si riportano di seguito i valori del coefficiente di deflusso indicati nell'Allegato A del D.G.R.V. 2948/2009.

tipologia	Coefficiente di deflusso $ arphi $
Superficie impermeabile	0,90
Superficie semi-permeabile	0,60
Superficie permeabile	0,20
Aree agricole	0,10

Tabella 4. Valori del coefficiente di deflusso indicati nell'Allegato A del DGRV 2948/2009.

Le considerazioni sopra esposte sono state applicate quindi alle previsioni di piano, ipotizzando sulla base delle indicazioni dei Progettisti del P.A.T. i coefficienti di deflusso medi per ciascuna situazione e tipologia d'intervento. I risultati di tali analisi potranno essere approfonditi con le

successive fasi progettuali, nell'ambito delle quali dovranno essere definite le specifiche soluzioni tecniche adottate.

Destinazione d'uso del suolo	superficie %	φ
Strade e marciapiedi	10	0,90
Superfici lastricate e parcheggi	10	0,60
Verde pubblico	10	0,20
Verde privato	30	0,20
Edificata	40	0,90
MEDIA	0,590	

Tabella 5. AREA RESIDENZIALE - Stima del coefficiente di deflusso di progetto.

Destinazione d'uso del suolo	superficie %	φ
Strade e marciapiedi	15	0,90
Superfici lastricate e parcheggi	30	0,60
Verde pubblico	5	0,20
Verde privato	10	0,20
Edificata	40	0,90
MEDIA	0,705	

Tabella 6. AREA PRODUTTIVA-COMMERCIALE - Stima del coefficiente di deflusso di progetto.

Destinazione d'uso del suolo	superficie %	φ
Strade e marciapiedi	15	0,90
Superfici lastricate e parcheggi	10	0,60
Verde pubblico	50	0,20
Verde privato	-	0,20
Edificata	25	0,705
MEDIA	0,520	

Tabella 7. AREA A SERVIZI - Stima del coefficiente di deflusso di progetto.

Superfici oggetto di trasformazione

Si riportano di seguito i dati relativi agli interventi di Piano, con indicata l'estensione totale delle singole aree e l'estensione della trasformazione territoriale rispetto alla situazione attuale; l'ultima colonna specifica la classe di appartenenza secondo le definizioni riportante nell'Allegato A della D.G.R. 2948/2009.

АТО	area	Superfici	Superficie totale		Estensione trasformazione territoriale		ciente di lusso	Classe di appartenenza (Allegato A D.G.R. 2948/2009)
						attuale	progetto	
		m²	ha	m²	ha			
2	11	3424	0,34	3424	0,34	0,10	0,52	Modesta impermeabilizzazione potenziale
2	14	2879	0,29	2879	0,29	0,10	0,59	Modesta impermeabilizzazione potenziale
2	16	2001	0,20	2001	0,20	0,10	0,59	Modesta impermeabilizzazione potenziale
2	18	2921	0,29	2921	0,29	0,10	0,71	Modesta impermeabilizzazione potenziale
2	19	3608	0,36	3608	0,36	0,10	0,59	Modesta impermeabilizzazione potenziale
3	1	13038	1,30	13038	1,30	0,10	0,71	Significativa impermabilizzione superficiale
3	2	7883	0,79	7883	0,79	0,10	0,59	Modesta impermeabilizzazione potenziale
3	3	3238	0,32	3238	0,32	0,10	0,59	Modesta impermeabilizzazione potenziale
3	4	8423	0,84	8423	0,84	0,10	0,59	Modesta impermeabilizzazione potenziale
3	5	13297	1,33	13297	1,33	0,75	0,71	Significativa impermabilizzione superficiale
3	6	8336	0,83	8336	0,83	0,50	0,71	Modesta impermeabilizzazione potenziale
3	7	9488	0,95	9488	0,95	0,10	0,59	Modesta impermeabilizzazione potenziale
3	8	12451	1,25	12451	1,25	0,10	0,71	Significativa impermabilizzione superficiale
3	9	4298	0,43	4298	0,43	0,10	0,59	Modesta impermeabilizzazione potenziale
3	10	9173	0,92	9173	0,92	0,10	0,59	Modesta impermeabilizzazione potenziale
3	12	1549	0,15	1549	0,15	0,10	0,59	Modesta impermeabilizzazione potenziale
3	13	2778	0,28	2778	0,28	0,10	0,59	Modesta impermeabilizzazione potenziale
3	15	2045	0,20	2045	0,20	0,10	0,59	Modesta impermeabilizzazione potenziale
3	17	3113	0,31	3113	0,31	0,10	0,59	Modesta impermeabilizzazione potenziale
3	25	5207	0,52	5207	0,52	0,10	0,59	Modesta impermeabilizzazione potenziale
3	26	6316	0,63	6316	0,63	0,10	0,59	Modesta impermeabilizzazione potenziale
4	20	2761	0,28	2761	0,28	0,10	0,59	Modesta impermeabilizzazione potenziale
4	21	2631	0,26	2631	0,26	0,10	0,59	Modesta impermeabilizzazione potenziale
4	22	1579	0,16	1579	0,16	0,10	0,59	Modesta impermeabilizzazione potenziale
4	23	1914	0,19	1914	0,19	0,10	0,59	Modesta impermeabilizzazione potenziale
4	24	2545	0,25	2545	0,25	0,10	0,59	Modesta impermeabilizzazione potenziale

Tabella 8. Elenco di tutti gli interventi di Piano, con indicazione dell'estensione della trasformazione territoriale e la relativa classe di appartenenza.

Dovendo valutare le misure necessarie a garantire l'invarianza idraulica, poiché le superfici interessate da trasformazione (nuova area di PAT o area già prevista dal PRG, ma non ancora attivata) sono ad oggi in gran parte a destinazione agricola, si è fissato cautelativamente un coefficiente di deflusso pari a 0,10.

Calcolo del volume di invaso 4.5

Il presente paragrafo riporta il calcolo del volume di invaso necessario a garantire che la portata di efflusso rimanga costante rispetto ai valori precedenti la trasformazione territoriale.

I risultati di tali analisi potranno comunque essere aggiornati nei successivi livelli di progettazione dove le parti interessate potranno concordare gli aspetti di maggiore approfondimento e dettaglio progettuale.

Data la superficie afferente, il sistema di laminazione deve essere tale da immagazzinare tutto il volume in eccesso, che durante l'evento non può essere recapitato al recettore finale, a causa del rispetto del coefficiente udometrico massimo fissato in 10 l/s per ha.

Il volume che la rete di progetto deve essere in grado di laminare, a compensazione dell'aumento di impermeabilità, risulta pari a :

$$\Delta V = V_p - V_i$$

dove:

- ΔV eccesso di volume d'acqua meteorica generato dalla diversa destinazione d'uso del suolo:
- volume d'acqua prodotto dall'intervento di progetto in un tempo di pioggia t_n V_{n}

$$V_p = uSt_p$$

con u e h dati dalle seguenti relazioni:

$$u = 2.78\varphi \frac{h}{\tau_c}$$

$$h = a\tau^n$$

 V_i = volume d'acqua che oggi si considera venga immesso nella rete idrografica esistente, al termine di un tempo di pioggia $t_{\scriptscriptstyle p}$, corrispondente a un coefficiente udometrico u' = 10 l/s, ha.

$$V_i = u'St_p$$

Il valore massimo di ΔV si ottiene calcolando i volumi precedentemente definiti per vari tempi di pioggia e determinando il valore di t_p a cui corrisponde il massimo del volume di invaso.

Il volume ΔV costituirà così il minimo che dovrà essere immagazzinato nell'ambito di ciascuna area presa in considerazione, nel caso che sia possibile scaricare in un corpo idrico superficiale. In caso contrario, si rende necessario realizzare sistemi di infiltrazione negli strati superficiali del sottosuolo.

Emissione: Marzo 2014 pag. 32

In quest'ultima situazione, il volume andrà calcolato di volta in volta sulla base della specifica portata di infiltrazione, che dipende dalla tipologia e dalla dimensione del dispositivo previsto e della permeabilità del terreno interessato dall'intervento.

Si ritiene opportuno, a tal proposito, riportare uno stralcio tratto dall'Allegato A del DGR n.2948/2009, in merito alle indicazioni operative riguardante i sistemi di infiltrazione nel sottosuolo.

In caso di terreni ad elevata capacità di accettazione delle piogge (coefficiente di filtrazione maggiore di 10⁻³ m/s e frazione limosa inferiore al 5%), in presenza di falda freatica sufficientemente profonda e di regola in caso di piccole superfici impermeabilizzate, è possibile realizzare sistemi di infiltrazione facilitata in cui convogliare i deflussi in eccesso prodotti dall'impermeabilizzazione. Questi sistemi, che fungono da dispositivi di reimmissione in falda, possono essere realizzati, a titolo esemplificativo, sotto forma di vasche o condotte disperdenti posizionati negli strati superficiali del sottosuolo in cui sia consentito l'accumulo di un battente idraulico che favorisca l'infiltrazione e la dispersione nel terreno. I parametri assunti alla base del dimensionamento dovranno essere desunti da prove sperimentali. Tuttavia le misure compensative andranno di norma individuate in volumi di invaso per la laminazione di almeno il 50% degli aumenti di portata.

Qualora si voglia aumentare la percentuale di portata attribuita all'infiltrazione, fino ad una incidenza massima del 75%, Il progettista dovrà documentare, attraverso appositi elaborati progettuali e calcoli idraulici, la funzionalità del sistema a smaltire gli eccessi di portata prodotti dalle superfici impermeabilizzate rispetto alle condizioni antecedenti la trasformazione, almeno per un tempo di ritorno di 100 anni nei territori di collina e montagna e di 200 anni nei territori di pianura.

Nei casi in cui lo scarico delle acque meteoriche da una superficie giunga direttamente al mare o ad altro corpo idrico il cui livello non risulti influenzato dagli apporti meteorici, l'invarianza idraulica delle trasformazioni delle superfici è implicitamente garantita a prescindere dalla realizzazione di dispositivi di laminazione.

Risultati e schede di sintesi

I risultati dei calcoli svolti per determinare i volumi necessari a garantire il rispetto dell'invarianza idraulica sono riportati nelle Schede di sintesi, allegate alla presente relazione.

Per ciascuna delle 26 aree di trasformazione è stata elaborata una scheda di sintesi, come riportato negli allegati alla presente relazione. Per ogni scheda sono riportate:

- il numero identificativo dell'area;
- la destinazione urbanistica attuale e futura:

Comune di Cartigliano – Piano di Assetto del Territorio Emissione: Marzo 2014 pag. 33

- le principali caratteristiche geologiche, geomorfologiche, di permeabilità del sito;
- le principali caratteristiche idrogeologiche ed idrauliche;
- il bacino a cui appartiene l'area;
- le misure di mitigazione in termini di volumi di accumulo e le indicazioni per l'eventuale riduzione del volume attraverso misure compensative alternative;
- estratti cartografici, riportanti la sovrapposizione delle aree di Piano con la rete idraulica gestita dal Consorzio di Bonifica;
- risultati dei calcoli eseguiti.

Emissione: Marzo 2014 pag. 34

Indicazioni di carattere generale

Vengono riportati di seguito alcuni indirizzi generali per mitigare l'impatto idraulico delle nuove urbanizzazioni.

In mancanza di uno studio più rigoroso, deve essere compensata la riduzione dei volumi di invaso conseguenti all'urbanizzazione in modo da limitare le portate scaricate nella rete idraulica superficiale.

I volumi potranno essere ottenuti sovra-dimensionando le condotte per le acque meteoriche, realizzando nuovi fossati e zone a temporanea sommersione nelle aree a verde (bacini di laminazione). Al fine di garantire un effettivo riempimento degli invasi realizzati e quindi la loro effettiva funzionalità, nella sezione terminale della rete di acque bianche, prima dello scarico, si dovrà posizionare un manufatto di controllo in grado di scaricare, ordinariamente, una portata massima unitaria pari a quanto prescritto dal competente consorzio di bonifica.

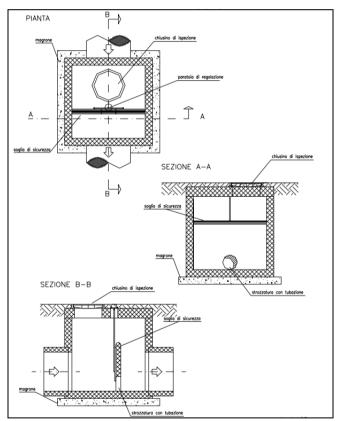


Figura 16. Schema di pozzetto di regolazione portata e sezionamento.

Ai fini dell'incremento dell'invaso è possibile altresì prevedere risezionamenti ed allargamenti di canali consorziali e agrari privati con oneri a carico di chi urbanizza.

Tenuto conto del principio che, a seguito di nuovi interventi di urbanizzazione, la portata meteorica che potrà essere conferita nei corpi ricettori non dovrà superare il valore di portata

derivante dalla medesima area prima dell'urbanizzazione ("invarianza idraulica"), il PI favorirà, ove l'assetto geologico ed idrogeologico lo permette (elevata permeabilità dei terreni subsuperficiali, assenza di falda freatica fino a 2/3 m), il ricorso a sistemi di "infiltrazione facilitata" nel suolo delle acque meteoriche, con i quali smaltire i deflussi in eccesso, prodotti dall'impermeabilizzazione. A tale scopo, si può ricorrere ad uno o anche più dei seguenti sistemi:

- pavimentazioni permeabili (strade pedonali, marciapiedi, parcheggi);
- bacini di infiltrazione;
- pozzi di infiltrazione, ove permessi dalla normativa di tutela ambientale);
- trincee drenanti / sub-irrigazione.

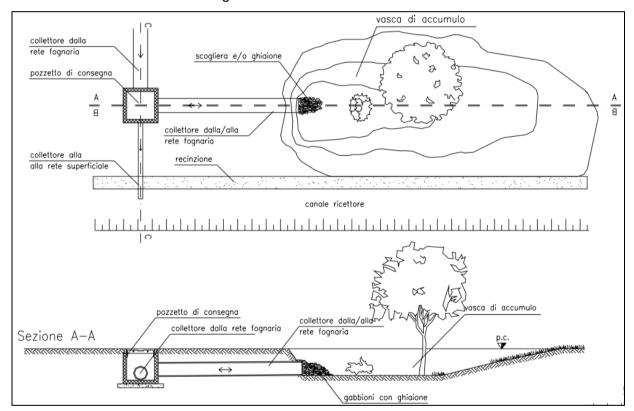


Figura 17. Schema di funzionamento di una vasca di accumulo.

Valutazione di compatibilità idraulica - Relazione Emissione: Marzo 2014 pag. 36

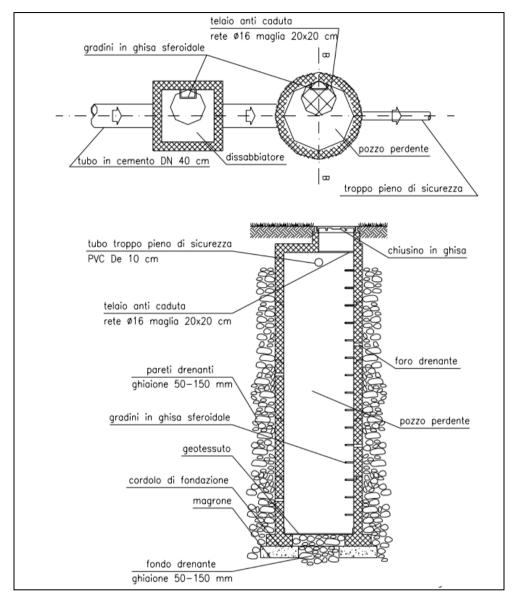


Figura 18. Schema di pozzo disperdente con dissabbiatore.

L'aspetto saliente dei sistemi sopracitati è rappresentato dal mantenimento della loro efficienza nel tempo. che comporta la necessità di una periodica pulizia. Per le modalità operative e le indicazioni tecniche specifiche alla vigente normativa, rappresentata attualmente dall'Allegato A della DGR 2948 del 6 ottobre 2009.

Interferenze con le reti di distribuzione irrigua

Le trasformazioni previste dal Piano possono interessare le reti di distribuzione irrigua esistenti, gestite nel caso in esame dal Consorzio di Bonifica "Brenta" con sede a Cittadella (PD). Gli eventuali interventi necessari ad escludere interferenze dovranno essere a carico di chi effettua la trasformazione.

Valutazione di compatibilità idraulica - Relazione Emissione: Marzo 2014 pag. 37

Nel caso in cui non si verifichi un'interferenza diretta, ad esempio in presenza di una condotta pluvirrigua interrata, è necessario garantire una fascia di rispetto con larghezza 3 m (1,5 m a destra + 1,5 m a sinistra rispetto all'asse della condotta), al fine di consentire l'accesso dei mezzi necessari ad effettuare le operazioni di manutenzione.

Marostica, marzo 2014

Emissione: Marzo 2014

dott. geol. Luigi Stevan

Comune di Cartigliano – Piano di Assetto del Territorio Valutazione di compatibilità idrauli

Bibliografia

- 1. Distribuzione spazio temporale delle piogge intense nel Triveneto. C.N.R. Regione Veneto, Quaderni di ricerca n.7, 1986.
- 2. Studio sulle piogge intense nel territorio montano della Regione Veneto Regione Veneto, Dipartimento Foreste, Centro Sperimentale Valanghe e Difesa del Suolo -Quaderni di ricerca n.2, 1985.
- 3. Dimensionamento delle opere idrauliche. Quaderno 1. Autorità di bacino dei fiumi Isonzo, Tagliamento, Livenza, Piave, Brenta-Bacchiglione, 1996.
- 4. Sistemazione dei corsi d'acqua. Da Deppo, Datei, Salandin, in Edizioni Libreria Cortina, Padova1997.
- 5. Progetto di Piano Stralcio per l'Assetto Idrogeologico dei bacini idrografici dei fiumi Isonzo, Tagliamento, Piave, Brenta-Bacchiglione - Relazione Tecnica. Autorità di bacino dei fiumi Isonzo, Tagliamento, Livenza, Piave, Brenta-Bacchiglione, 2012.
- 6. Piano Territoriale di Coordinamento Provinciale Rapporto Ambientale. Provincia di Vicenza, Dipartimento Territorio e Ambiente, 2006.
- 7. Piano di Tutela delle Acque Regione Veneto.
- 8. Piano Provinciale di Emergenza. Provincia di Vicenza Servizio Protezione Civile, 2008.

Siti internet

- 9. www.adbve.it
- 10. www.comune.cartigliano.vi.it
- 11. www.consorziobrenta.it

Valutazione di compatibilità idraulica - Relazione Emissione: Marzo 2014 pag. 39

REGIONE DEL VENETO

PROVINCIA DI VICENZA

COMUNE DI CARTIGLIANO

VALUTAZIONE DI COMPATIBILITÀ IDRAULICA

Riguardante il "Piano di Assetto del Territorio"

ALLEGATI

Emissione		MARZO 2014

Valutazione di compatibilità idraulica - Relazione pag. 2 Comune di Cartigliano – Piano di Assetto del Territorio Emissione: Marzo 2014

АТО	area	Superfic	ie totale	Estens trasform territo	azione		ciente di lusso	Classe di appartenenza (Allegato A D.G.R. 2948/2009)		Volu	ıme di co	mpensaz	ione	
						attuale	progetto		Tr=5	0 anni	Tr=10	00 anni	Tr=20	00 anni
		m²	ha	m²	ha				m³	m³/ha	m³	m³/ha	m³	m³/ha
2	11	3424	0,34	3424	0,34	0,10	0,52	Modesta impermeabilizzazione potenziale	119	348	138	402	156	457
2	14	2879	0,29	2879	0,29	0,10	0,59	Modesta impermeabilizzazione potenziale	120	418	139	482	158	549
2	16	2001	0,20	2001	0,20	0,10	0,59	Modesta impermeabilizzazione potenziale	84	418	97	482	110	549
2	18	2921	0,29	2921	0,29	0,10	0,71	Modesta impermeabilizzazione potenziale	160	547	184	631	210	718
2	19	3608	0,36	3608	0,36	0,40	0,59	Modesta impermeabilizzazione potenziale	84	235	96	271	111	309
3	1	13038	1,30	13038	1,30	0,10	0,71	Significativa impermabilizzione superficiale	713	547	822	631	936	718
3	2	7883	0,79	7883	0,79	0,10	0,59	Modesta impermeabilizzazione potenziale	330	418	380	482	433	549
3	3	3238	0,32	3238	0,32	0,10	0,59	Modesta impermeabilizzazione potenziale	135	418	156	482	178	549
3	4	8423	0,84	8423	0,84	0,10	0,59	Modesta impermeabilizzazione potenziale	352	418	406	482	462	549
3	5	13297	1,33	13297	1,33	0,75	0,71	Significativa impermabilizzione superficiale	727	547	839	631	954	718
3	6	8336	0,83	8336	0,83	0,50	0,71	Modesta impermeabilizzazione potenziale	297	356	342	411	390	467
3	7	9488	0,95	9488	0,95	0,10	0,59	Modesta impermeabilizzazione potenziale	397	418	458	482	521	549
3	8	12451	1,25	12451	1,25	0,10	0,71	Significativa impermabilizzione superficiale	681	547	785	631	894	718
3	9	4298	0,43	4298	0,43	0,10	0,59	Modesta impermeabilizzazione potenziale	180	418	207	482	236	549
3	10	9173	0,92	9173	0,92	0,10	0,59	Modesta impermeabilizzazione potenziale	242	263	279	304	317	346
3	12	1549	0,15	1549	0,15	0,10	0,59	Modesta impermeabilizzazione potenziale	65	418	75	482	85	549
3	13	2778	0,28	2778	0,28	0,10	0,59	Modesta impermeabilizzazione potenziale	116	418	134	482	152	549
3	15	2045	0,20	2045	0,20	0,10	0,59	Modesta impermeabilizzazione potenziale	86	418	99	482	112	549
3	17	3113	0,31	3113	0,31	0,10	0,59	Modesta impermeabilizzazione potenziale	130	418	150	482	171	549
3	25	5207	0,52	5207	0,52	0,10	0,59	Modesta impermeabilizzazione potenziale	218	418	251	482	286	549
3	26	6316	0,63	6316	0,63	0,10	0,59	Modesta impermeabilizzazione potenziale	264	418	305	482	347	549
4	20	2761	0,28	2761	0,28	0,10	0,59	Modesta impermeabilizzazione potenziale	115	418	133	482	152	549
4	21	2631	0,26	2631	0,26	0,10	0,59	Modesta impermeabilizzazione potenziale	110	418	127	482	144	549
4	22	1579	0,16	1579	0,16	0,10	0,59	Modesta impermeabilizzazione potenziale	66	418	76	482	87	549
4	23	1914	0,19	1914	0,19	0,10	0,59	Modesta impermeabilizzazione potenziale	80	418	92	482	105	549
4	24	2545	0,25	2545	0,25	0,10	0,59	Modesta impermeabilizzazione potenziale	106	418	123	482	140	549

Legenda

ATO

limite comunale

corsi d'acqua

condotte pluvirrigue

---- canali

A.T.O. 2

Area 11

Destinazione attuale: agricola

Destinazione futura: Servizi ed attrezzature di interesse comune

Caratteristiche geologiche e geomorfologiche

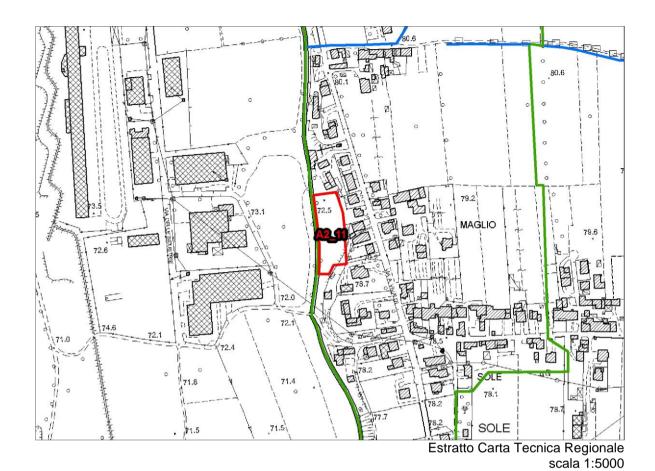
Zona pianeggiante che si sviluppa alla base di una scarpata; pochi decimetri di terreno agrario su materasso ghiaioso-sabbioso prevalente, con grado di permeabilità medio-alto.

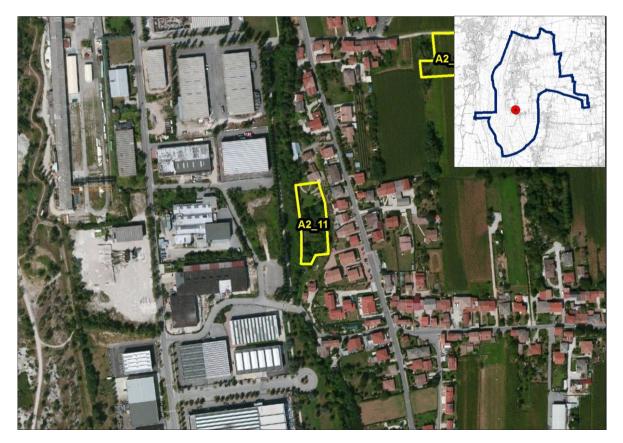
Caratteristiche idrogeologiche ed idrauliche attuali

Falda profonda 5 ÷ 10 m; non ipotizzabili fenomeni di esondazione o ristagno d'acqua.

Sottobacino scolante

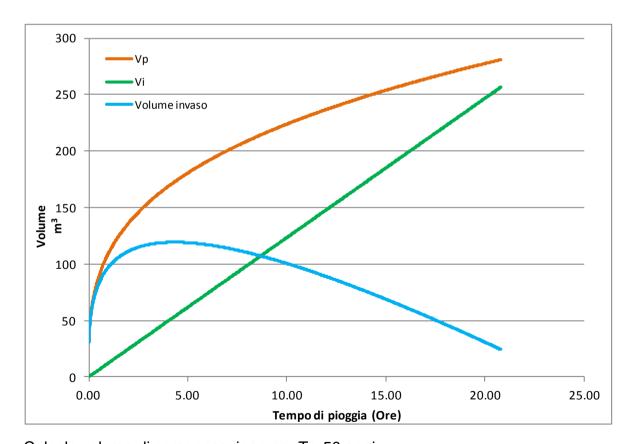
Roggia Bernarda (canale irriguo)


Misure di compensazione


ATO	area	area Superficie totale		Esten	sione	Classe di appartenenza	Volume di compensazione					
AIO	arca			trasform	nazione	(Allegato A D.G.R. 2948/2009)		0 anni	Tr=10	0 anni	Tr=20	0 anni
		m²	ha	m²	ha		m³	m³/ha	m³	m³/ha	m³	m³/ha
2	11	3424	0.34	3424	0.34	Modesta impermeabilizzazione potenziale	119	348	138	402	156	457

Note

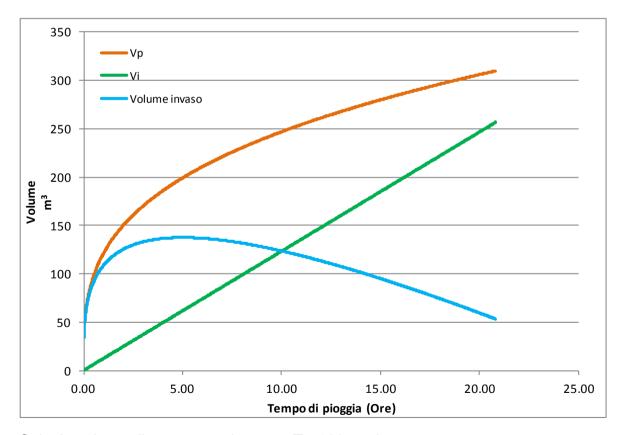
Data l'accessibilità al materasso ghiaioso dotato di buone caratteristiche drenanti, si ipotizza che il volume di laminazione possa essere ridotto utilizzando dispositivi di infiltrazione nel terreno. È ipotizzabile eventuale recapito su corpo idrico superficiale (Roggia Bernarda), previa accordo con le disposizioni impartite dal competente Consorzio di Bonifica.


Estratto Ortofoto – anno 2010-2011

scala 1:5000

a [mm/ore-n] 61.50 n 0.31 φ 0.52 S [m²] 3.424.00 0.3424 Qout 10 l/s,ha

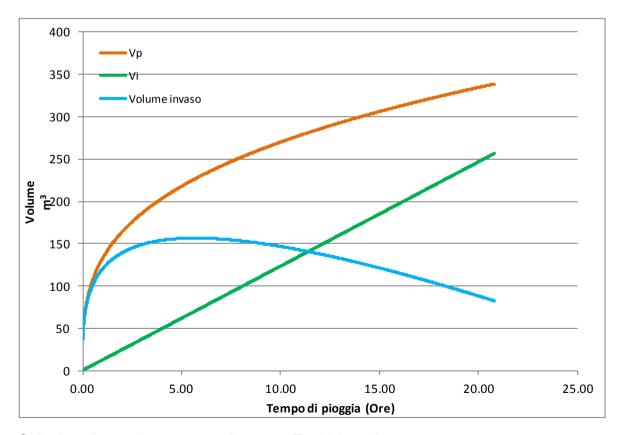
tp [min]	tp [ore]	h [mm]	u[l/s,ha]	Q [m ³ /s]	Vp[m³]	Vi[m³]	∆V[m³]
5	0.08	28.47	493.81	0.169	51	1	50
10	0.17	35.29	306.09	0.105	63	2	61
20	0.33	43.75	189.73	0.065	78	4	74
40	0.67	54.24	117.61	0.040	97	8	88
80	1.33	67.24	72.90	0.025	120	16	103
160	2.67	83.35	45.19	0.015	149	33	116
320	5.33	103.33	28.01	0.010	184	66	118
500	8.33	118.67	20.59	0.007	211	103	109
1000	16.67	147.11	12.76	0.004	262	205	57



Calcolo volume di compensazione per Tr=50 anni

a [mm/ore-n] 67.86 n 0.31 φ 0.52 S [m²] 3424.0 0.34 Qout 10 l/s,ha

tp [min]	tp [ore]	h [mm]	u[l/s,ha]	Q [m ³ /s]	Vp[m³]	Vi[m³]	∆V[m³]
5	0.08	31.41	544.88	0.187	56	1	55
10	0.17	38.94	337.74	0.116	69	2	67
20	0.33	48.27	209.35	0.072	86	4	82
40	0.67	59.84	129.77	0.044	107	8	98
80	1.33	74.19	80.44	0.028	132	16	116
160	2.67	91.97	49.86	0.017	164	33	131
320	5.33	114.02	30.91	0.011	203	66	137
500	8.33	130.94	22.71	0.008	233	103	131
1000	16.67	162.33	14.08	0.005	289	205	84



Calcolo volume di compensazione per Tr=100 anni

 $\begin{array}{ccc} \textbf{a [mm/ore-n]} & 74.19 \\ & \textbf{n} & 0.31 \\ & \boldsymbol{\phi} & 0.52 \\ & \textbf{S [m²]} & 3424.0 & 0.34 \\ & \textbf{Qout} & 10 \text{ l/s,ha} \end{array}$

tp [min]	tp [ore]	h [mm]	u[l/s,ha]	Q [m ³ /s]	Vp[m³]	Vi[m³]	∆V[m³]
5	0.08	34.34	595.70	0.204	61	1	60
10	0.17	42.57	369.25	0.126	76	2	74
20	0.33	52.78	228.88	0.078	94	4	90
40	0.67	65.43	141.87	0.049	117	8	108
80	1.33	81.11	87.94	0.030	145	16	128
160	2.67	100.55	54.51	0.019	179	33	146
320	5.33	124.66	33.79	0.012	222	66	156
500	8.33	143.15	24.83	0.009	255	103	152
1000	16.67	177.47	15.39	0.005	316	205	111

Calcolo volume di compensazione per Tr=200 anni

A.T.O. 2

Area 14

Destinazione attuale: agricola

Destinazione futura: residenziale

Caratteristiche geologiche e geomorfologiche

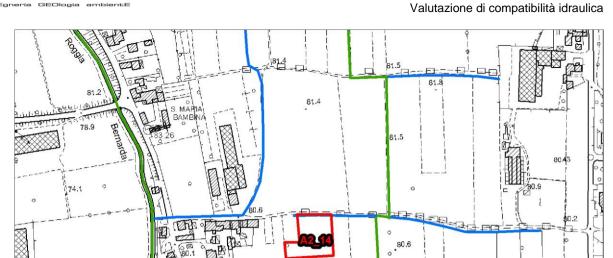
Zona pianeggiante; 1 ÷ 2 m di terreno limoso su materasso ghiaioso-sabbioso prevalente, con grado di permeabilità medio-alto.

Caratteristiche idrogeologiche ed idrauliche attuali

Falda profonda 10 ÷ 15 m; non ipotizzabili fenomeni di esondazione o ristagno d'acqua.

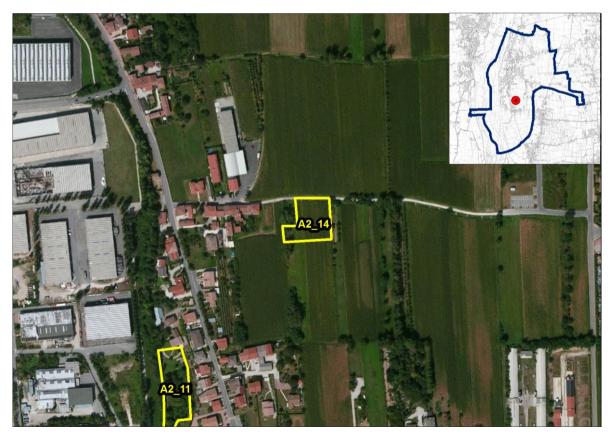
Sottobacino scolante

_


Misure di compensazione

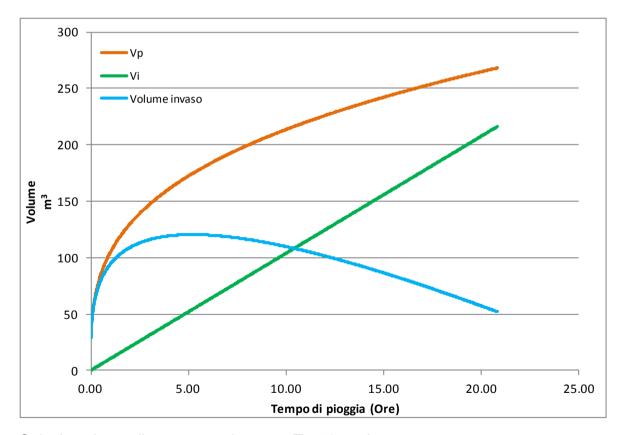
АТО	area	Superficie totale		Estensione trasformazione		Classe di appartenenza (Allegato A D.G.R. 2948/2009)			lume di compens				
		m² ha		m²	ha	,	m³	m³/ha	m³	m³/ha	m³	m³/ha	
2	14	2879	0.29	2879	0.29	Modesta impermeabilizzazione potenziale	120	418	139	482	158	549	

Note


Data l'accessibilità al materasso ghiaioso dotato di buone caratteristiche drenanti, si ipotizza che il volume di laminazione possa essere ridotto utilizzando dispositivi di infiltrazione nel terreno.

Estratto Carta Tecnica Regionale scala 1:5000

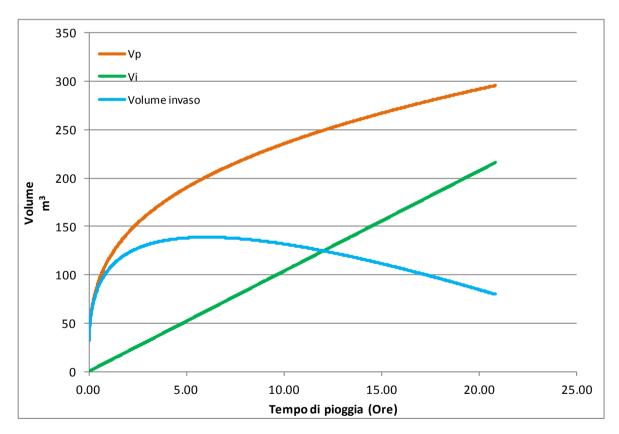
79.2



Estratto Ortofoto – anno 2010-2011 scala 1:5000

a [mm/ore-n] 61.50 n 0.31 φ 0.59 S [m²] 2878.60 0.28786 Qout 10 l/s,ha

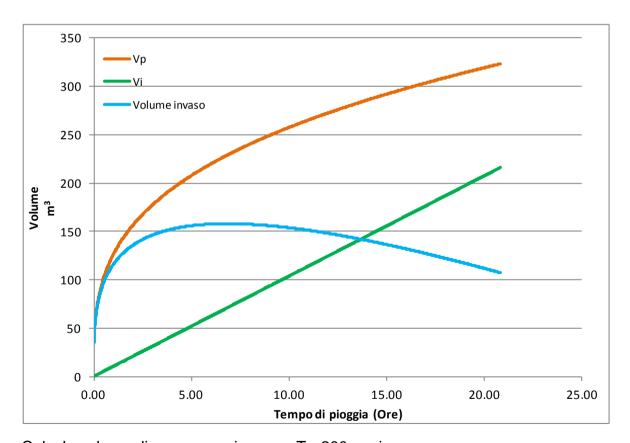
tp [min]	tp [ore]	h [mm]	u[l/s,ha]	Q [m ³ /s]	Vp[m³]	Vi[m³]	∆V[m³]
5	0.08	28.47	560.28	0.161	48	1	48
10	0.17	35.29	347.29	0.100	60	2	58
20	0.33	43.75	215.27	0.062	74	3	71
40	0.67	54.24	133.44	0.038	92	7	85
80	1.33	67.24	82.71	0.024	114	14	100
160	2.67	83.35	51.27	0.015	142	28	114
320	5.33	103.33	31.78	0.009	176	55	120
500	8.33	118.67	23.36	0.007	202	86	115
1000	16.67	147.11	14.48	0.004	250	173	77



Calcolo volume di compensazione per Tr=50 anni

a [mm/ore-n] 67.86 n 0.31 φ 0.59 S [m²] 2878.60 0.28786 Qout 10 l/s,ha

tp [min]	tp [ore]	h [mm]	u[l/s,ha]	Q [m ³ /s]	Vp[m³]	Vi[m³]	∆V[m³]
5	0.08	31.41	618.22	0.178	53	1	53
10	0.17	38.94	383.21	0.110	66	2	64
20	0.33	48.27	237.53	0.068	82	3	79
40	0.67	59.84	147.24	0.042	102	7	95
80	1.33	74.19	91.26	0.026	126	14	112
160	2.67	91.97	56.57	0.016	156	28	129
320	5.33	114.02	35.07	0.010	194	55	139
500	8.33	130.94	25.77	0.007	223	86	136
1000	16.67	162.33	15.97	0.005	276	173	103



Calcolo volume di compensazione per Tr=100 anni

a [mm/ore-n] 74.19
n 0.31
φ 0.59
S [m²] 2878.60 0.28786
Qout 10 l/s,ha

tp [min]	tp [ore]	h [mm]	u[l/s,ha]	Q [m ³ /s]	Vp[m³]	Vi[m³]	∆V[m³]
5	0.08	34.34	675.89	0.195	58	1	58
10	0.17	42.57	418.95	0.121	72	2	71
20	0.33	52.78	259.69	0.075	90	3	86
40	0.67	65.43	160.97	0.046	111	7	104
80	1.33	81.11	99.78	0.029	138	14	124
160	2.67	100.55	61.85	0.018	171	28	143
320	5.33	124.66	38.34	0.011	212	55	157
500	8.33	143.15	28.18	0.008	243	86	157
1000	16.67	177.47	17.46	0.005	302	173	129

Calcolo volume di compensazione per Tr=200 anni

A.T.O. 2

Area 16

Destinazione attuale: agricola

Destinazione futura: residenziale

Caratteristiche geologiche e geomorfologiche

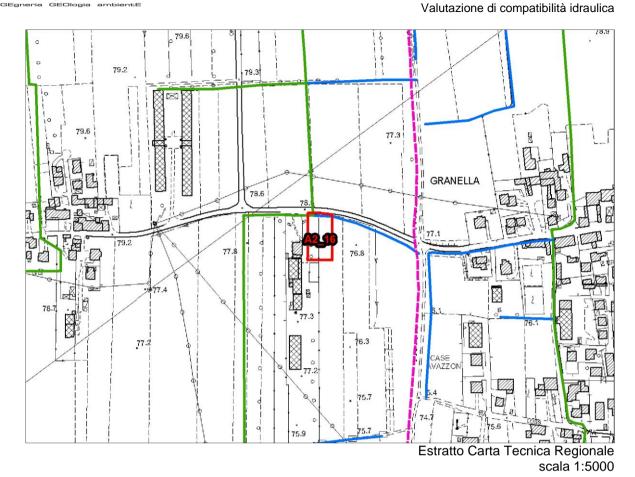
Zona pianeggiante; 1 ÷ 2 m di terreno limoso su materasso ghiaioso-sabbioso prevalente, con grado di permeabilità medio-alto.

Caratteristiche idrogeologiche ed idrauliche attuali

Falda profonda 10 ÷ 15 m; non ipotizzabili fenomeni di esondazione o ristagno d'acqua.

Sottobacino scolante

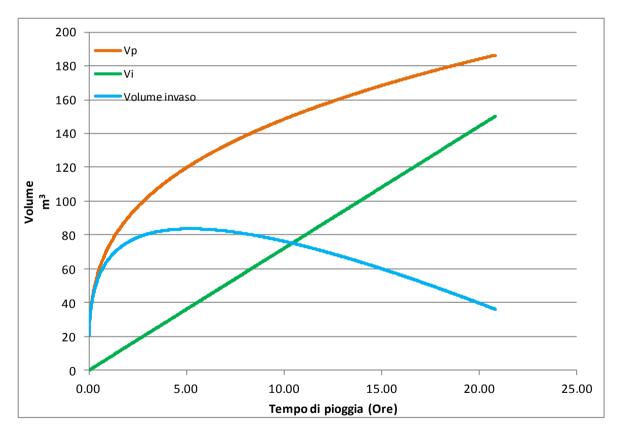
_


Misure di compensazione

ATO	area	Supe	rficie	Esten	sione	Classe di appartenenza	٧	olume	di co	mpens	sazion	e
AIO	totale		ale	trasformazione		(Allegato A D.G.R. 2948/2009)		anni	Tr=10	0 anni	Tr=20	0 anni
		m²	m ² ha m ² ha		ha		m³	m³/ha	m³	m³/ha	m³	m³/ha
2	16	2001	0.20	2001	0.20	Modesta impermeabilizzazione potenziale	84	418	97	482	110	549

Note

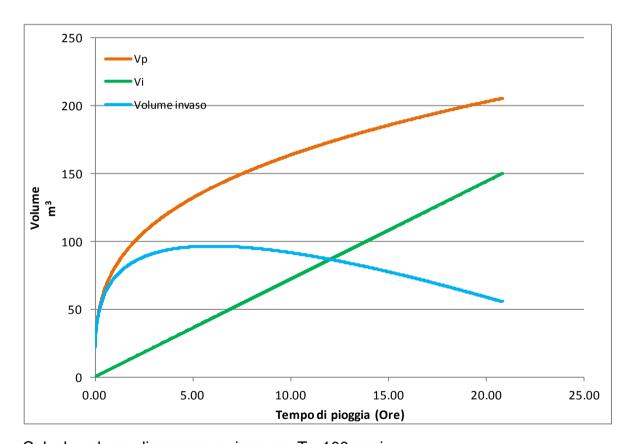
Data l'accessibilità al materasso ghiaioso dotato di buone caratteristiche drenanti, si ipotizza che il volume di laminazione possa essere ridotto utilizzando dispositivi di infiltrazione nel terreno. È ipotizzabile eventuale recapito su corpo idrico superficiale (canale), previa verifica delle quote ed in accordo con le disposizioni impartite dal competente Consorzio di Bonifica.



Estratto Ortofoto – anno 2010-2011 scala 1:5000

a [mm/ore-n] 61.50
n 0.31
φ 0.59
S [m²] 2000.90 0.20009
Qout 10 l/s,ha

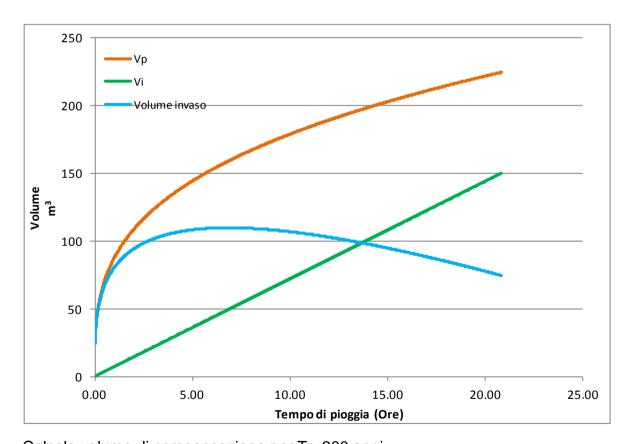
tp [min]	tp [ore]	h [mm]	u[l/s,ha]	Q [m ³ /s]	Vp[m³]	Vi[m³]	∆V[m³]
5	0.08	28.47	560.28	0.112	34	1	33
10	0.17	35.29	347.29	0.069	42	1	40
20	0.33	43.75	215.27	0.043	52	2	49
40	0.67	54.24	133.44	0.027	64	5	59
80	1.33	67.24	82.71	0.017	79	10	70
160	2.67	83.35	51.27	0.010	98	19	79
320	5.33	103.33	31.78	0.006	122	38	84
500	8.33	118.67	23.36	0.005	140	60	80
1000	16.67	147.11	14.48	0.003	174	120	54



Calcolo volume di compensazione per Tr=50 anni

a [mm/ore-n] 67.86 n 0.31 φ 0.59 S [m²] 2000.90 0.20009 Qout 10 l/s,ha

tp [min]	tp [ore]	h [mm]	u[l/s,ha]	Q [m ³ /s]	Vp[m³]	Vi[m³]	∆V[m³]
5	0.08	31.41	618.22	0.124	37	1	37
10	0.17	38.94	383.21	0.077	46	1	45
20	0.33	48.27	237.53	0.048	57	2	55
40	0.67	59.84	147.24	0.029	71	5	66
80	1.33	74.19	91.26	0.018	88	10	78
160	2.67	91.97	56.57	0.011	109	19	89
320	5.33	114.02	35.07	0.007	135	38	96
500	8.33	130.94	25.77	0.005	155	60	95
1000	16.67	162.33	15.97	0.003	192	120	72



Calcolo volume di compensazione per Tr=100 anni

a [mm/ore-n] 74.19
n 0.31
φ 0.59
S [m²] 2000.90 0.20009
Qout 10 l/s,ha

tp [min]	tp [ore]	h [mm]	u[l/s,ha]	Q [m ³ /s]	Vp[m³]	Vi[m³]	∆V[m³]
5	0.08	34.34	675.89	0.135	41	1	40
10	0.17	42.57	418.95	0.084	50	1	49
20	0.33	52.78	259.69	0.052	62	2	60
40	0.67	65.43	160.97	0.032	77	5	72
80	1.33	81.11	99.78	0.020	96	10	86
160	2.67	100.55	61.85	0.012	119	19	100
320	5.33	124.66	38.34	0.008	147	38	109
500	8.33	143.15	28.18	0.006	169	60	109
1000	16.67	177.47	17.46	0.003	210	120	90

Calcolo volume di compensazione per Tr=200 anni

Α.	Τ.	0.	2
	- •	••	

Area 18

Destinazione attuale: agricola

Destinazione futura: produttiva

Caratteristiche geologiche e geomorfologiche

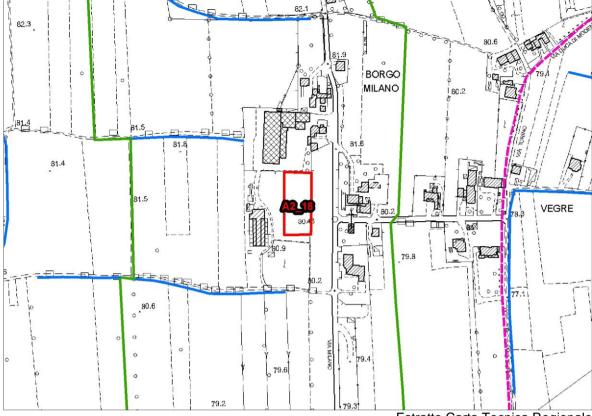
Zona pianeggiante; 1 ÷ 2 m di terreno limoso su materasso ghiaioso-sabbioso prevalente, con grado di permeabilità medio-alto.

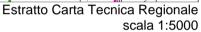
Caratteristiche idrogeologiche ed idrauliche attuali

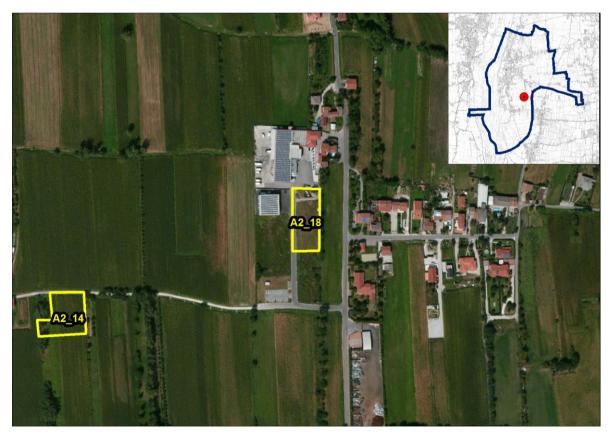
Falda profonda 10 ÷ 15 m; non ipotizzabili fenomeni di esondazione o ristagno d'acqua.

Sottobacino scolante

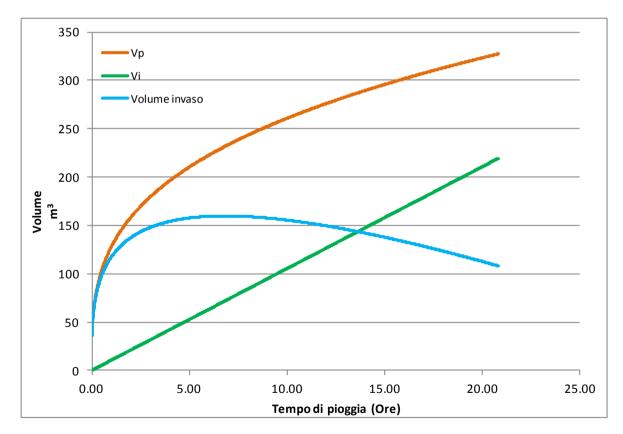
_


Misure di compensazione


ΔΤΩ	area	Supe	rficie	Esten	sione	Classe di appartenenza	V	olume	di co	mpens	sazion	e
AIO	area	tot	ale	trasform	nazione	(Allegato A D.G.R. 2948/2009)	Tr=50	anni	Tr=10	0 anni	Tr=20	0 anni
		m²	ha	m²	ha		m³	m³/ha	m³	m³/ha	m³	m³/ha
2	18	2921	0.29	2921	0.29	Modesta impermeabilizzazione potenziale	160	547	184	631	210	718


Note

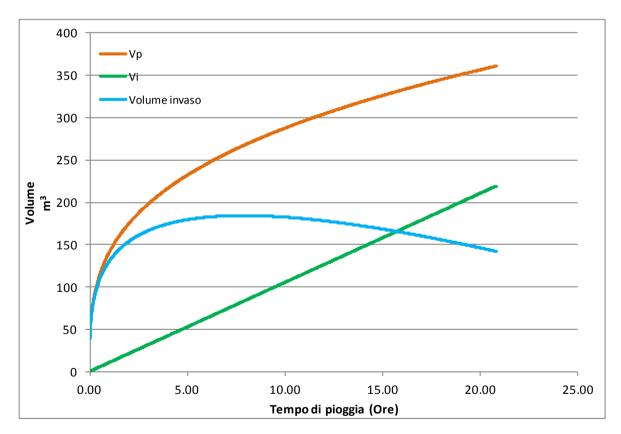
Data l'accessibilità al materasso ghiaioso dotato di buone caratteristiche drenanti, si ipotizza che il volume di laminazione possa essere ridotto utilizzando dispositivi di infiltrazione nel terreno.



Estratto Ortofoto – anno 2010-2011 scala 1:5000

a [mm/ore-n] 61.50
n 0.31
φ 0.71
S [m²] 2920.80 0.29208
Qout 10 l/s,ha

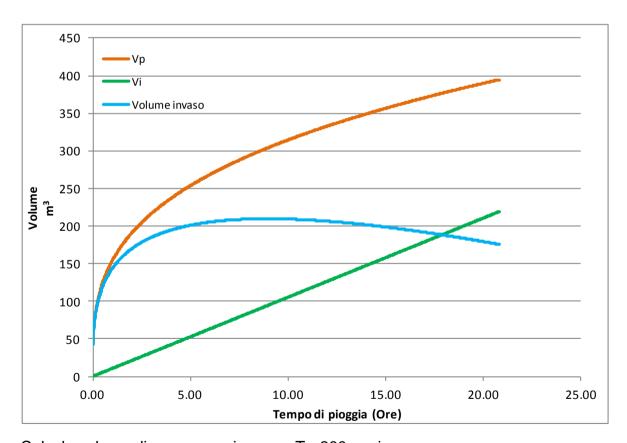
tp [min]	tp [ore]	h [mm]	u[l/s,ha]	Q [m ³ /s]	Vp[m³]	Vi[m³]	∆V[m³]
5	0.08	28.47	674.24	0.197	59	1	58
10	0.17	35.29	417.93	0.122	73	2	71
20	0.33	43.75	259.05	0.076	91	4	87
40	0.67	54.24	160.58	0.047	113	7	106
80	1.33	67.24	99.53	0.029	140	14	126
160	2.67	83.35	61.70	0.018	173	28	145
320	5.33	103.33	38.24	0.011	214	56	158
500	8.33	118.67	28.11	0.008	246	88	159
1000	16.67	147.11	17.42	0.005	305	175	130



Calcolo volume di compensazione per Tr=50 anni

a [mm/ore-n] 67.86 n 0.31 φ 0.71 S [m²] 2920.80 0.29208 Qout 10 l/s,ha

tp [min]	tp [ore]	h [mm]	u[l/s,ha]	Q [m ³ /s]	Vp[m³]	Vi[m³]	∆V[m³]
5	0.08	31.41	743.96	0.217	65	1	64
10	0.17	38.94	461.15	0.135	81	2	79
20	0.33	48.27	285.85	0.083	100	4	97
40	0.67	59.84	177.18	0.052	124	7	117
80	1.33	74.19	109.83	0.032	154	14	140
160	2.67	91.97	68.08	0.020	191	28	163
320	5.33	114.02	42.20	0.012	237	56	181
500	8.33	130.94	31.01	0.009	272	88	184
1000	16.67	162.33	19.22	0.006	337	175	162



Calcolo volume di compensazione per Tr=100 anni

a [mm/ore-n] 74.19
n 0.31
φ 0.71
S [m²] 2920.80 0.29208
Qout 10 l/s,ha

tp [min]	tp [ore]	h [mm]	u[l/s,ha]	Q [m ³ /s]	Vp[m³]	Vi[m³]	∆V[m³]
5	0.08	34.34	813.36	0.238	71	1	70
10	0.17	42.57	504.17	0.147	88	2	87
20	0.33	52.78	312.51	0.091	110	4	106
40	0.67	65.43	193.71	0.057	136	7	129
80	1.33	81.11	120.07	0.035	168	14	154
160	2.67	100.55	74.43	0.022	209	28	181
320	5.33	124.66	46.13	0.013	259	56	203
500	8.33	143.15	33.91	0.010	297	88	209
1000	16.67	177.47	21.02	0.006	368	175	193

Calcolo volume di compensazione per Tr=200 anni

A.T.O. 2

Area 19

Destinazione attuale: agricola/pertinenze edifici

Destinazione futura: residenziale

Caratteristiche geologiche e geomorfologiche

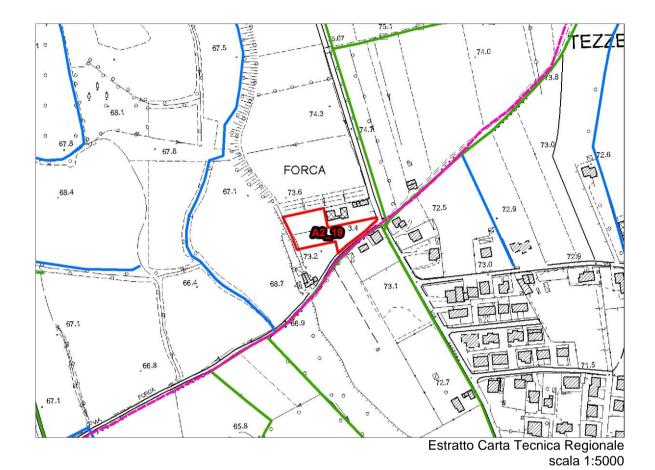
Zona pianeggiante nei pressi di un'antica scarpata d'erosione; 1 ÷ 2 m di terreno limoso su materasso ghiaioso-sabbioso prevalente, con grado di permeabilità medio-alto.

Caratteristiche idrogeologiche ed idrauliche attuali

Falda profonda 10 ÷ 15 m; non ipotizzabili fenomeni di esondazione o ristagno d'acqua.

Sottobacino scolante

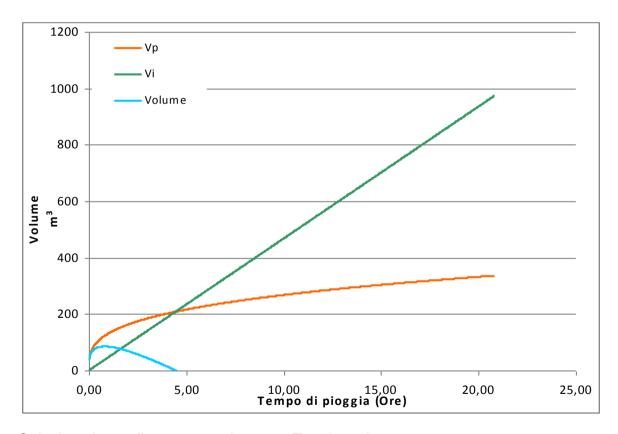
Roggia Cartigliana 1 ((canale irriguo)


Misure di compensazione

АТО	area	Superfic	ie totale	Estens trasform territo	azione		ciente di lusso	Classe di appartenenza (Allegato A D.G.R. 2948/2009)		Volu	ıme di co	mpensaz	ione	
						attuale	progetto		Tr=50) anni	Tr=10	0 anni	Tr=20	00 anni
		m²	ha	m²	ha				m³	m³/ha	m³	m³/ha	m³	m³/ha
2	19	3608	0,36	3608	0,36	0,40	0,59	Modesta impermeabilizzazione potenziale	84	235	96	271	111	309

Note

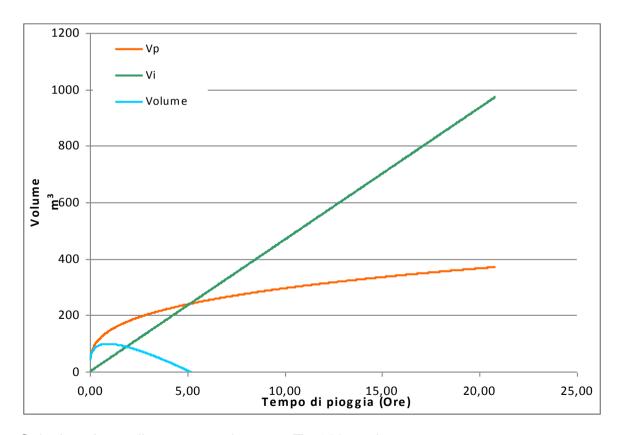
Data l'accessibilità al materasso ghiaioso dotato di buone caratteristiche drenanti, si ipotizza che il volume di laminazione possa essere ridotto utilizzando dispositivi di infiltrazione nel terreno. È ipotizzabile anche eventuale recapito su corpo idrico superficiale (Roggia Cartigliana 1), in accordo con le disposizioni impartite dal competente Consorzio di Bonifica.



Estratto Ortofoto – anno 2010-2011 scala 1:5000

a [mm/ore-n] 61,50 n 0,31 φ 0,59 S [m²] 3608,30 0,36083 Qout 36 l/s,ha

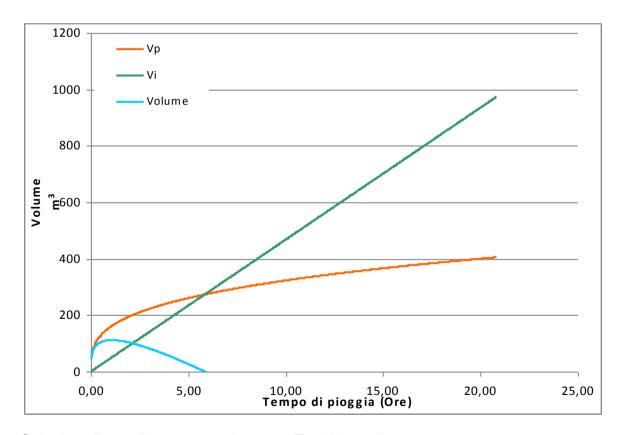
tp [min]	tp [ore]	h [mm]	u[l/s,ha]	Q [m ³ /s]	Vp[m³]	Vi[m³]	∆V[m³]
5	0,08	28,47	560,28	0,202	61	4	57
10	0,17	35,29	347,29	0,125	75	8	67
20	0,33	43,75	215,27	0,078	93	16	78
40	0,67	54,24	133,44	0,048	116	31	84
80	1,33	67,24	82,71	0,030	143	62	81
160	2,67	83,35	51,27	0,018	178	125	53
320	5,33	103,33	31,78	0,011	220	249	-29
500	8,33	118,67	23,36	0,008	253	390	-137
1000	16,67	147,11	14,48	0,005	313	779	-466



Calcolo volume di compensazione per Tr=50 anni

a [mm/ore-n] 67,86 n 0,31 φ 0,59 S [m²] 3608,30 0,36083 Qout 36 l/s,ha

tp [min]	tp [ore]	h [mm]	u[l/s,ha]	Q [m ³ /s]	Vp[m³]	Vi[m³]	∆V[m³]
5	0,08	31,41	618,22	0,223	67	4	63
10	0,17	38,94	383,21	0,138	83	8	75
20	0,33	48,27	237,53	0,086	103	16	87
40	0,67	59,84	147,24	0,053	128	31	96
80	1,33	74,19	91,26	0,033	158	62	96
160	2,67	91,97	56,57	0,020	196	125	71
320	5,33	114,02	35,07	0,013	243	249	-6
500	8,33	130,94	25,77	0,009	279	390	-111
1000	16,67	162,33	15,97	0,006	346	779	-434



Calcolo volume di compensazione per Tr=100 anni

a [mm/ore-n] 74,19
n 0,31
φ 0,59
S [m²] 3608,30 0,36083
Qout 36 l/s,ha

tp [min]	tp [ore]	h [mm]	u[l/s,ha]	Q [m ³ /s]	Vp[m³]	Vi[m³]	∆V[m³]
5	0,08	34,34	675,89	0,244	73	4	69
10	0,17	42,57	418,95	0,151	91	8	83
20	0,33	52,78	259,69	0,094	112	16	97
40	0,67	65,43	160,97	0,058	139	31	108
80	1,33	81,11	99,78	0,036	173	62	110
160	2,67	100,55	61,85	0,022	214	125	90
320	5,33	124,66	38,34	0,014	266	249	16
500	8,33	143,15	28,18	0,010	305	390	-85
1000	16,67	177,47	17,46	0,006	378	779	-401

Calcolo volume di compensazione per Tr=200 anni

Α.	Τ.	0.	3

Area 1

Destinazione attuale: agricola

Destinazione futura: produttiva

Caratteristiche geologiche e geomorfologiche

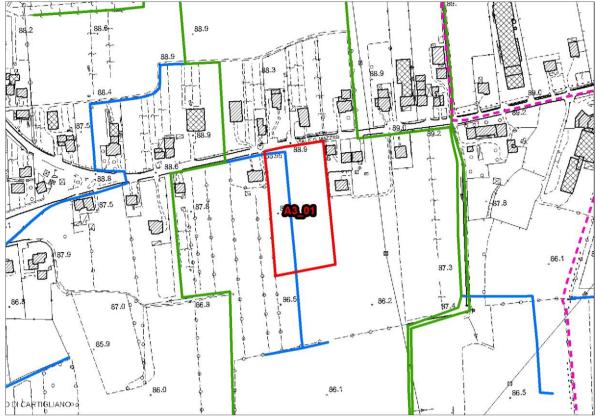
Zona pianeggiante; 1 ÷ 2 m di terreno limoso sabbioso su materasso ghiaioso-sabbioso prevalente, con grado di permeabilità medio-alto.

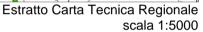
Caratteristiche idrogeologiche ed idrauliche attuali

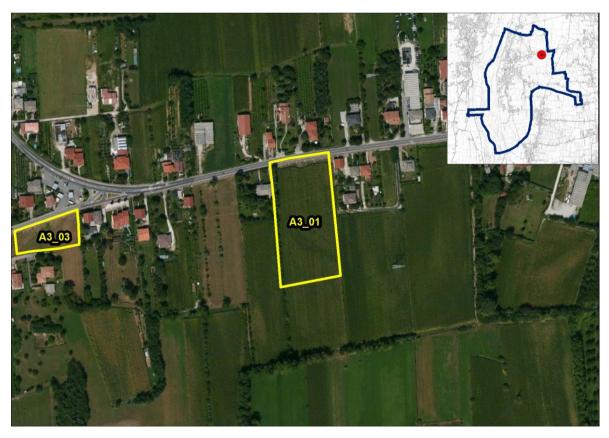
Falda profonda 15 ÷ 20 m; non ipotizzabili fenomeni di esondazione o ristagno d'acqua.

Sottobacino scolante

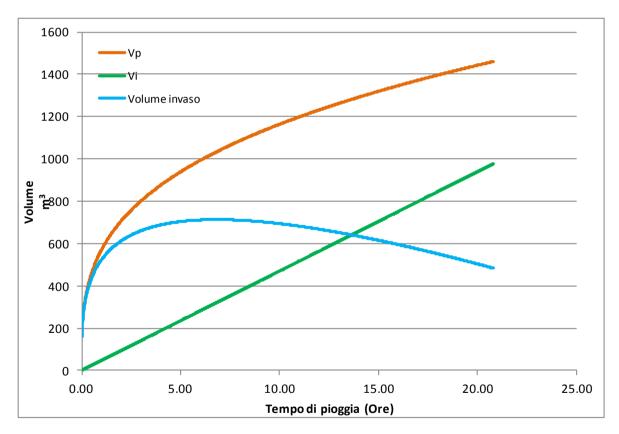
_


Misure di compensazione


ΔΤΩ	area	Superficie		Estensione		Classe di appartenenza	Volume di compensazione					
AIO		totale		trasformazione		(Allegato A D.G.R. 2948/2009)		anni	Tr=10	0 anni	Tr=20	0 anni
		m²	ha	m²	ha		m³	m³/ha	m³	m³/ha	m³	m³/ha
3	1	13038	1.30	13038	1.30	Significativa impermabilizzione superficiale	713	547	822	631	936	718


Note

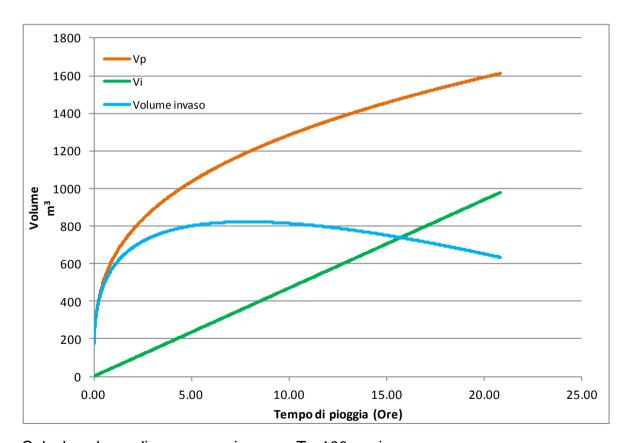
Data l'accessibilità al materasso ghiaioso dotato di buone caratteristiche drenanti, si ipotizza che il volume di laminazione possa essere ridotto utilizzando dispositivi di infiltrazione nel terreno.



Estratto Ortofoto – anno 2010-2011 scala 1:5000

a [mm/ore-n] 61.50
n 0.31
φ 0.71
S [m²] 13038.10 1.30381
Qout 10 l/s,ha

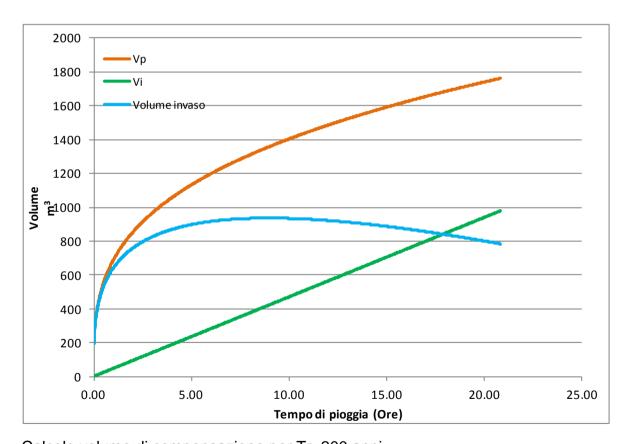
tp [min]	tp [ore]	h [mm]	u[l/s,ha]	Q [m ³ /s]	Vp[m³]	Vi[m³]	∆V[m³]
5	0.08	28.47	674.24	0.879	264	4	260
10	0.17	35.29	417.93	0.545	327	8	319
20	0.33	43.75	259.05	0.338	405	16	390
40	0.67	54.24	160.58	0.209	502	31	471
80	1.33	67.24	99.53	0.130	623	63	560
160	2.67	83.35	61.70	0.080	772	125	647
320	5.33	103.33	38.24	0.050	957	250	707
500	8.33	118.67	28.11	0.037	1099	391	708
1000	16.67	147.11	17.42	0.023	1363	782	581



Calcolo volume di compensazione per Tr=50 anni

a [mm/ore-n] 67.86 n 0.31 φ 0.71 S [m²] 13038.10 1.30381 Qout 10 l/s,ha

tp [min]	tp [ore]	h [mm]	u[l/s,ha]	Q [m ³ /s]	Vp[m³]	Vi[m³]	∆V[m³]
5	0.08	31.41	743.96	0.970	291	4	287
10	0.17	38.94	461.15	0.601	361	8	353
20	0.33	48.27	285.85	0.373	447	16	432
40	0.67	59.84	177.18	0.231	554	31	523
80	1.33	74.19	109.83	0.143	687	63	625
160	2.67	91.97	68.08	0.089	852	125	727
320	5.33	114.02	42.20	0.055	1056	250	806
500	8.33	130.94	31.01	0.040	1213	391	822
1000	16.67	162.33	19.22	0.025	1504	782	722



Calcolo volume di compensazione per Tr=100 anni

a [mm/ore-n] 74.19
n 0.31
φ 0.71
S [m²] 13038.10 1.30381
Qout 10 l/s,ha

tp [min]	tp [ore]	h [mm]	u[l/s,ha]	Q [m ³ /s]	Vp[m³]	Vi[m³]	∆V[m³]
5	0.08	34.34	813.36	1.060	318	4	314
10	0.17	42.57	504.17	0.657	394	8	387
20	0.33	52.78	312.51	0.407	489	16	473
40	0.67	65.43	193.71	0.253	606	31	575
80	1.33	81.11	120.07	0.157	751	63	689
160	2.67	100.55	74.43	0.097	932	125	806
320	5.33	124.66	46.13	0.060	1155	250	905
500	8.33	143.15	33.91	0.044	1326	391	935
1000	16.67	177.47	21.02	0.027	1644	782	862

Calcolo volume di compensazione per Tr=200 anni

Area 2

Destinazione attuale: agricola

Destinazione futura: residenziale

Caratteristiche geologiche e geomorfologiche

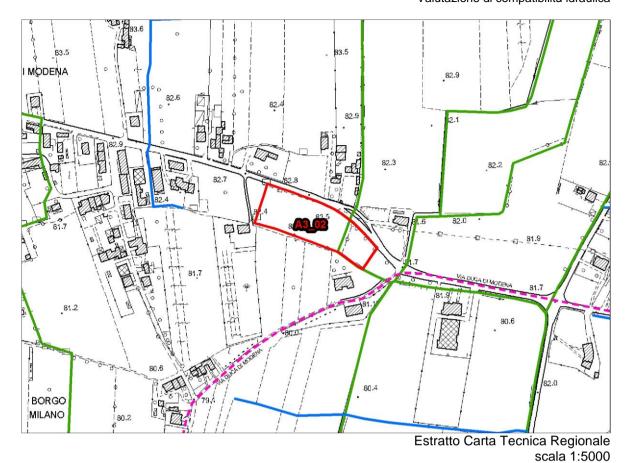
Zona pianeggiante; 1 ÷ 2 m di terreno limoso sabbioso su materasso ghiaioso-sabbioso prevalente, con grado di permeabilità medio-alto.

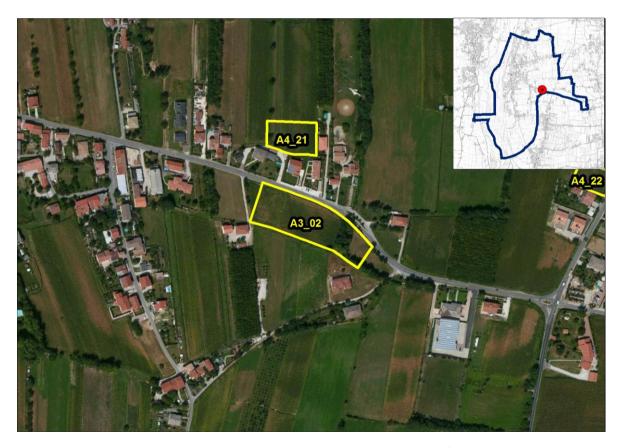
Caratteristiche idrogeologiche ed idrauliche attuali

Falda profonda 10 ÷ 15 m; non ipotizzabili fenomeni di esondazione o ristagno d'acqua.

Sottobacino scolante

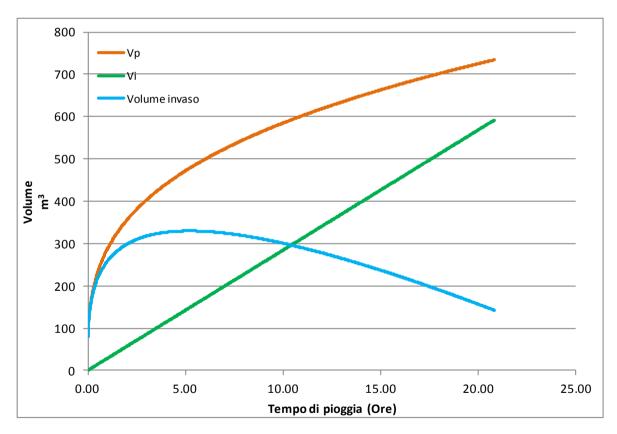
Roggia Cartigliana 3 (canale irriguo)


Misure di compensazione


АТО	area		rficie			Classe di appartenenza	Volume di compensazione						
		tot	ale	le trasformazione		(Allegato A D.G.R. 2948/2009)	Tr=50 anni Tr=100 anni Tr=20			Tr=20	0 anni		
		m²	ha	m²	ha		m³	m³/ha	m³	m³/ha	m³	m³/ha	
3	2	7883	0.79	7883	0.79	Modesta impermeabilizzazione potenziale	330	418	380	482	433	549	

Note

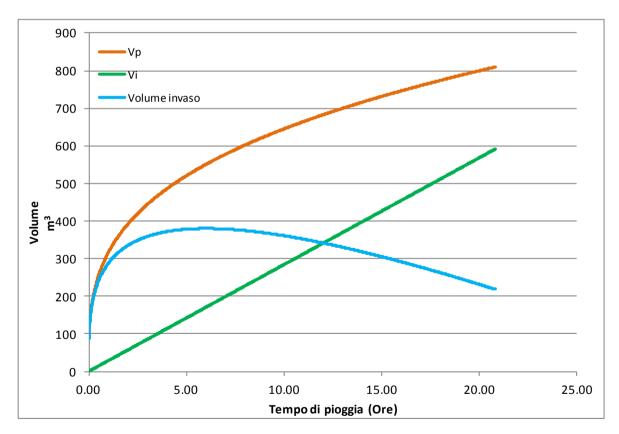
Data l'accessibilità al materasso ghiaioso dotato di buone caratteristiche drenanti, si ipotizza che il volume di laminazione possa essere ridotto utilizzando dispositivi di infiltrazione nel terreno. È ipotizzabile eventuale recapito su corpo idrico superficiale (Roggia Cartigliana 3) previa verifica delle quote e in accordo con le disposizioni impartite dal competente Consorzio di Bonifica.



Estratto Ortofoto – anno 2010-2011 scala 1:5000

a [mm/ore-n] 61.50 n 0.31 φ 0.59 S [m²] 7882.60 0.78826 Qout 10 l/s,ha

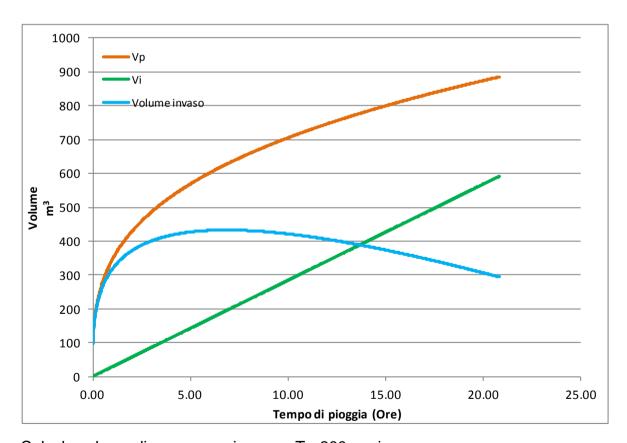
tp [min]	tp [ore]	h [mm]	u[l/s,ha]	Q [m ³ /s]	Vp[m³]	Vi[m³]	∆V[m³]
5	0.08	28.47	560.28	0.442	132	2	130
10	0.17	35.29	347.29	0.274	164	5	160
20	0.33	43.75	215.27	0.170	204	9	194
40	0.67	54.24	133.44	0.105	252	19	234
80	1.33	67.24	82.71	0.065	313	38	275
160	2.67	83.35	51.27	0.040	388	76	312
320	5.33	103.33	31.78	0.025	481	151	330
500	8.33	118.67	23.36	0.018	552	236	316
1000	16.67	147.11	14.48	0.011	685	473	212



Calcolo volume di compensazione per Tr=50 anni

a [mm/ore-n] 67.86 n 0.31 φ 0.59 S [m²] 7882.60 0.78826 Qout 10 l/s,ha

tp [min]	tp [ore]	h [mm]	u[l/s,ha]	Q [m ³ /s]	Vp[m³]	Vi[m³]	∆V[m³]
5	0.08	31.41	618.22	0.487	146	2	144
10	0.17	38.94	383.21	0.302	181	5	177
20	0.33	48.27	237.53	0.187	225	9	215
40	0.67	59.84	147.24	0.116	279	19	260
80	1.33	74.19	91.26	0.072	345	38	307
160	2.67	91.97	56.57	0.045	428	76	352
320	5.33	114.02	35.07	0.028	531	151	379
500	8.33	130.94	25.77	0.020	609	236	373
1000	16.67	162.33	15.97	0.013	756	473	283



Calcolo volume di compensazione per Tr=100 anni

a [mm/ore-n] 74.19
n 0.31
φ 0.59
S [m²] 7882.60 0.78826
Qout 10 l/s,ha

tp [min]	tp [ore]	h [mm]	u[l/s,ha]	Q [m ³ /s]	Vp[m³]	Vi[m³]	∆V[m³]
5	0.08	34.34	675.89	0.533	160	2	157
10	0.17	42.57	418.95	0.330	198	5	193
20	0.33	52.78	259.69	0.205	246	9	236
40	0.67	65.43	160.97	0.127	305	19	286
80	1.33	81.11	99.78	0.079	378	38	340
160	2.67	100.55	61.85	0.049	468	76	392
320	5.33	124.66	38.34	0.030	580	151	429
500	8.33	143.15	28.18	0.022	666	236	430
1000	16.67	177.47	17.46	0.014	826	473	353

Calcolo volume di compensazione per Tr=200 anni

Area 3

Destinazione attuale: agricola

Destinazione futura: residenziale

Caratteristiche geologiche e geomorfologiche

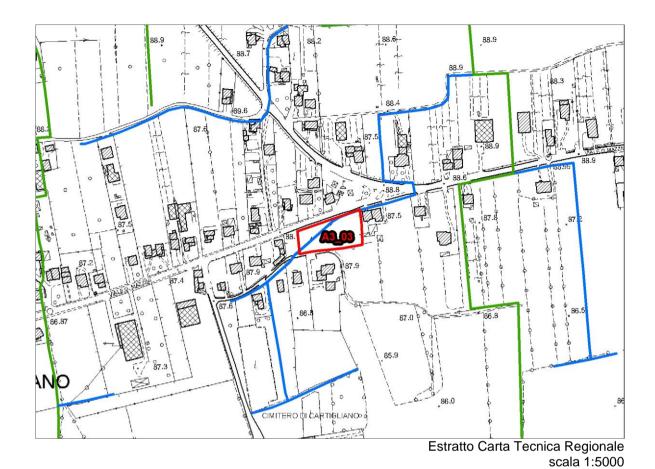
Zona pianeggiante; 1 ÷ 2 m di terreno limoso sabbioso su materasso ghiaioso-sabbioso prevalente, con grado di permeabilità medio-alto.

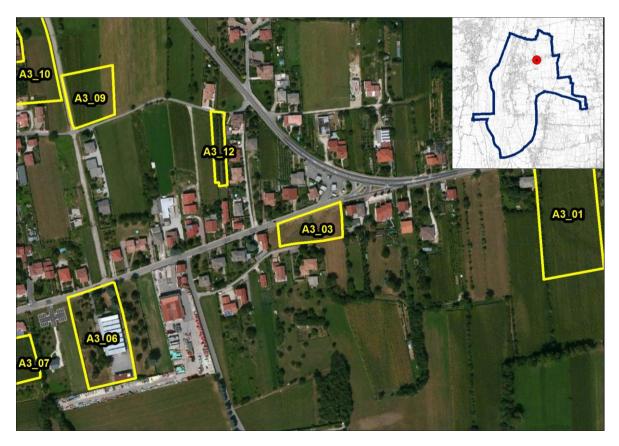
Caratteristiche idrogeologiche ed idrauliche attuali

Falda profonda 15 ÷ 20 m; non ipotizzabili fenomeni di esondazione o ristagno d'acqua.

Sottobacino scolante

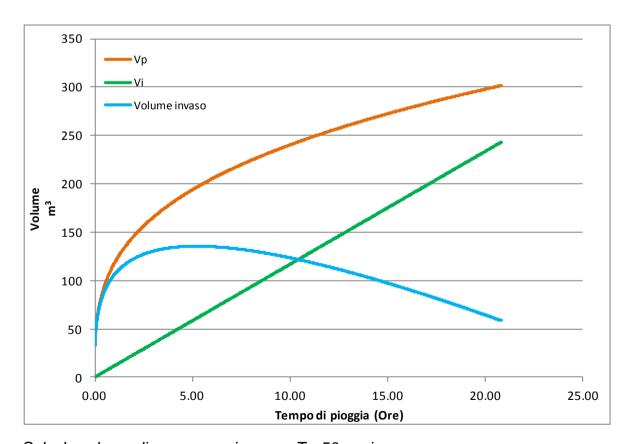
_


Misure di compensazione


ATO	area	Supe	rficie	Esten	sione	Classe di appartenenza	Volume di compensazione							
AIO	aica	tota	ale	trasformazione		(Allegato A D.G.R. 2948/2009)	Tr=50	Tr=50 anni Tr=100 anni Tr=20			0 anni			
		m²	ha	m²	ha		m³	m³/ha	m³	m³/ha	m³	m³/ha		
3	3	3238	0.32	3238	0.32	Modesta impermeabilizzazione potenziale	135	418	156	482	178	549		

Note

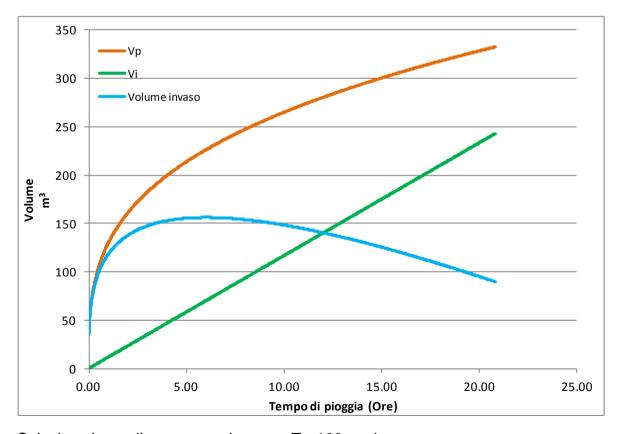
Data l'accessibilità al materasso ghiaioso dotato di buone caratteristiche drenanti, si ipotizza che il volume di laminazione possa essere ridotto utilizzando dispositivi di infiltrazione nel terreno.



Estratto Ortofoto – anno 2010-2011 scala 1:5000

a [mm/ore-n] 61.50
n 0.31
φ 0.59
S [m²] 3238.20 0.32382
Qout 10 l/s,ha

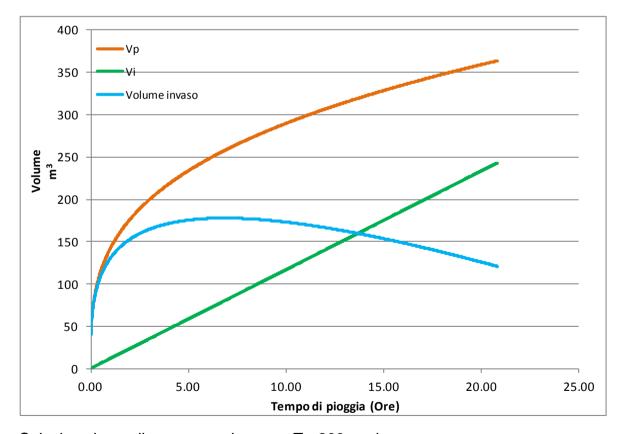
tp [min]	tp [ore]	h [mm]	u[l/s,ha]	Q [m ³ /s]	Vp[m³]	Vi[m³]	∆V[m³]
5	0.08	28.47	560.28	0.181	54	1	53
10	0.17	35.29	347.29	0.112	67	2	66
20	0.33	43.75	215.27	0.070	84	4	80
40	0.67	54.24	133.44	0.043	104	8	96
80	1.33	67.24	82.71	0.027	129	16	113
160	2.67	83.35	51.27	0.017	159	31	128
320	5.33	103.33	31.78	0.010	198	62	135
500	8.33	118.67	23.36	0.008	227	97	130
1000	16.67	147.11	14.48	0.005	281	194	87



Calcolo volume di compensazione per Tr=50 anni

a [mm/ore-n] 67.86 n 0.31 φ 0.59 S [m²] 3238.20 0.32382 Qout 10 l/s,ha

tp [min]	tp [ore]	h [mm]	u[l/s,ha]	Q [m ³ /s]	Vp[m³]	Vi[m³]	∆V[m³]
5	0.08	31.41	618.22	0.200	60	1	59
10	0.17	38.94	383.21	0.124	74	2	73
20	0.33	48.27	237.53	0.077	92	4	88
40	0.67	59.84	147.24	0.048	114	8	107
80	1.33	74.19	91.26	0.030	142	16	126
160	2.67	91.97	56.57	0.018	176	31	145
320	5.33	114.02	35.07	0.011	218	62	156
500	8.33	130.94	25.77	0.008	250	97	153
1000	16.67	162.33	15.97	0.005	310	194	116



Calcolo volume di compensazione per Tr=100 anni

a [mm/ore-n] 74.19
n 0.31
φ 0.59
S [m²] 3238.20 0.32382
Qout 10 l/s,ha

tp [min]	tp [ore]	h [mm]	u[l/s,ha]	Q [m ³ /s]	Vp[m³]	Vi[m³]	∆V[m³]
5	0.08	34.34	675.89	0.219	66	1	65
10	0.17	42.57	418.95	0.136	81	2	79
20	0.33	52.78	259.69	0.084	101	4	97
40	0.67	65.43	160.97	0.052	125	8	117
80	1.33	81.11	99.78	0.032	155	16	140
160	2.67	100.55	61.85	0.020	192	31	161
320	5.33	124.66	38.34	0.012	238	62	176
500	8.33	143.15	28.18	0.009	274	97	177
1000	16.67	177.47	17.46	0.006	339	194	145

Calcolo volume di compensazione per Tr=200 anni

Area 4

Destinazione attuale: agricola

Destinazione futura: residenziale

Caratteristiche geologiche e geomorfologiche

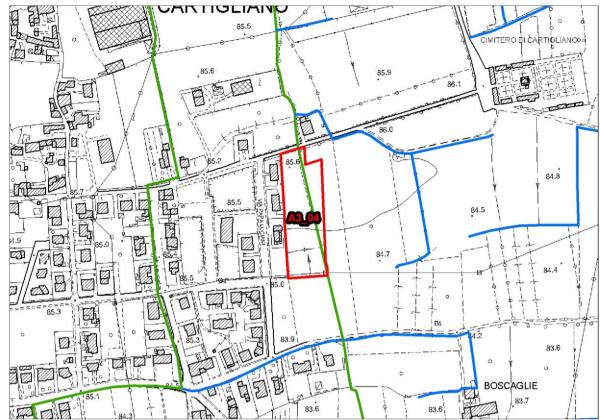
Zona pianeggiante; 1 ÷ 2 m di terreno limoso sabbioso su materasso ghiaioso-sabbioso prevalente, con grado di permeabilità medio-alto.

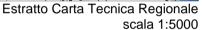
Caratteristiche idrogeologiche ed idrauliche attuali

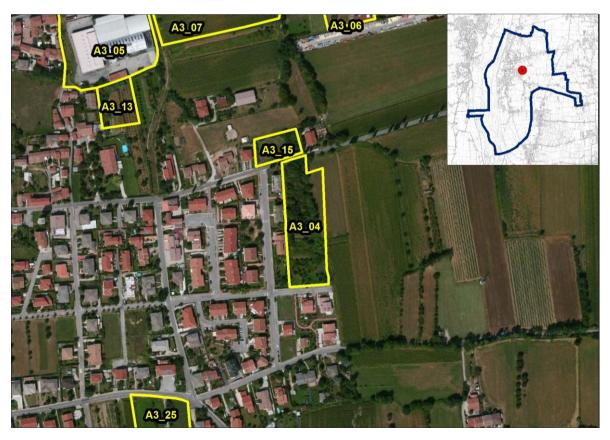
Falda profonda 10 ÷ 15 m; non ipotizzabili fenomeni di esondazione o ristagno d'acqua.

Sottobacino scolante

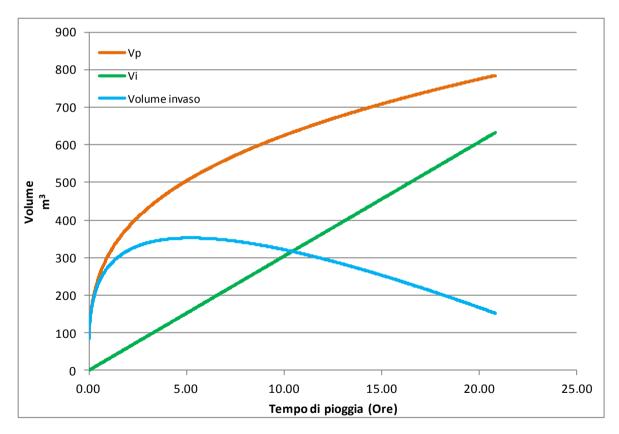
_


Misure di compensazione


ATO	area	Supe	rficie	Esten	sione	Classe di appartenenza	Volume di compensazione						
AIO	aica	tot	ale	trasformazione		(Allegato A D.G.R. 2948/2009)	Tr=50	Tr=50 anni Tr=100 anni Tr=20			Tr=20	0 anni	
		m²	ha	m²	ha		m³	m³/ha	m³	m³/ha	m³	m³/ha	
3	4	8423	0.84	8423	0.84	Modesta impermeabilizzazione potenziale	352	418	406	482	462	549	


Note

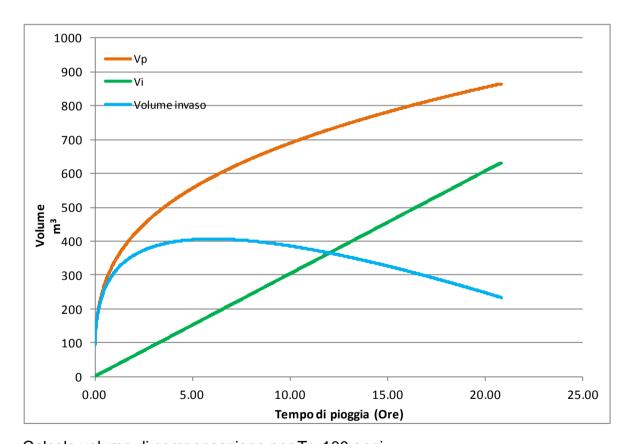
Data l'accessibilità al materasso ghiaioso dotato di buone caratteristiche drenanti, si ipotizza che il volume di laminazione possa essere ridotto utilizzando dispositivi di infiltrazione nel terreno. È ipotizzabile eventuale recapito su corpo idrico superficiale previa verifica delle quote ed in accordo con le disposizioni impartite dal competente Consorzio di Bonifica.



Estratto Ortofoto – anno 2010-2011 scala 1:5000

a [mm/ore-n] 61.50 n 0.31 φ 0.59 S [m²] 8422.80 0.84228 Qout 10 l/s,ha

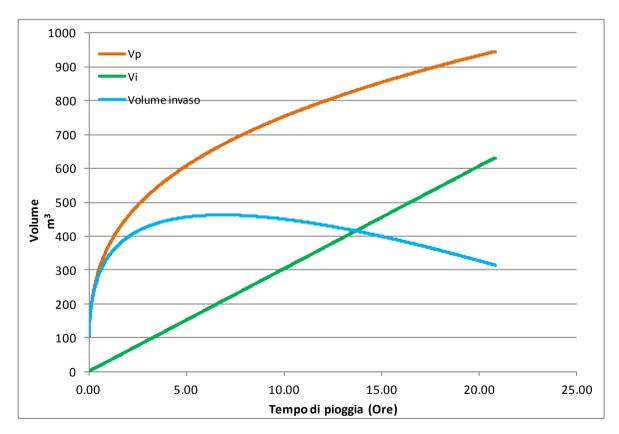
tp [min]	tp [ore]	h [mm]	u[l/s,ha]	Q [m ³ /s]	Vp[m³]	Vi[m³]	∆V[m³]
5	0.08	28.47	560.28	0.472	142	3	139
10	0.17	35.29	347.29	0.293	176	5	170
20	0.33	43.75	215.27	0.181	218	10	207
40	0.67	54.24	133.44	0.112	270	20	250
80	1.33	67.24	82.71	0.070	334	40	294
160	2.67	83.35	51.27	0.043	415	81	334
320	5.33	103.33	31.78	0.027	514	162	352
500	8.33	118.67	23.36	0.020	590	253	337
1000	16.67	147.11	14.48	0.012	732	505	226



Calcolo volume di compensazione per Tr=50 anni

a [mm/ore-n] 67.86 n 0.31 φ 0.59 S [m²] 8422.80 0.84228 Qout 10 l/s,ha

tp [min]	tp [ore]	h [mm]	u[l/s,ha]	Q [m ³ /s]	Vp[m³]	Vi[m³]	∆V[m³]
5	0.08	31.41	618.22	0.521	156	3	154
10	0.17	38.94	383.21	0.323	194	5	189
20	0.33	48.27	237.53	0.200	240	10	230
40	0.67	59.84	147.24	0.124	298	20	277
80	1.33	74.19	91.26	0.077	369	40	329
160	2.67	91.97	56.57	0.048	457	81	377
320	5.33	114.02	35.07	0.030	567	162	405
500	8.33	130.94	25.77	0.022	651	253	399
1000	16.67	162.33	15.97	0.013	807	505	302



Calcolo volume di compensazione per Tr=100 anni

a [mm/ore-n] 74.19
n 0.31
φ 0.59
S [m²] 8422.80 0.84228
Qout 10 l/s,ha

tp [min]	tp [ore]	h [mm]	u[l/s,ha]	Q [m ³ /s]	Vp[m³]	Vi[m³]	∆V[m³]
5	0.08	34.34	675.89	0.569	171	3	168
10	0.17	42.57	418.95	0.353	212	5	207
20	0.33	52.78	259.69	0.219	262	10	252
40	0.67	65.43	160.97	0.136	325	20	305
80	1.33	81.11	99.78	0.084	403	40	363
160	2.67	100.55	61.85	0.052	500	81	419
320	5.33	124.66	38.34	0.032	620	162	458
500	8.33	143.15	28.18	0.024	712	253	459
1000	16.67	177.47	17.46	0.015	883	505	377

Calcolo volume di compensazione per Tr=200 anni

Area 5

Destinazione attuale: Commerciale, industriale

Destinazione futura: Residenziale, commerciale, direzionale, servizi e

funzioni compatibili

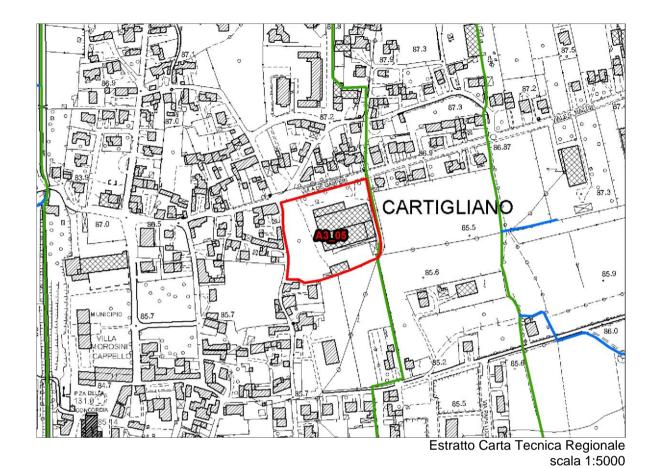
Caratteristiche geologiche e geomorfologiche

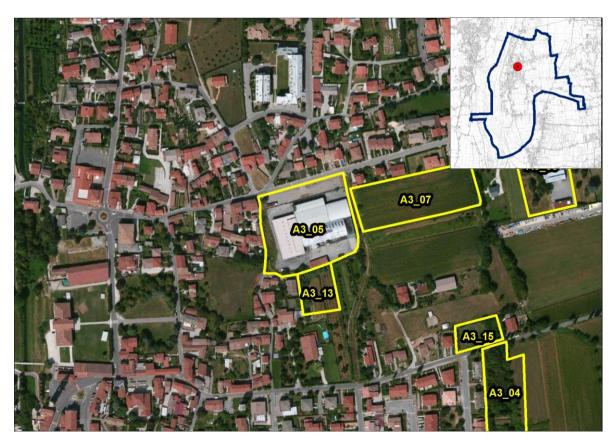
Zona pianeggiante; 1 ÷ 2 m di terreno limoso sabbioso su materasso ghiaioso-sabbioso prevalente, con grado di permeabilità medio-alto.

Caratteristiche idrogeologiche ed idrauliche attuali

Falda profonda 10 ÷ 15 m; non ipotizzabili fenomeni di esondazione o ristagno d'acqua.

Sottobacino scolante


-


Misure di compensazione

Non sono previste misure di compensazione

Note

Estratto Ortofoto – anno 2010-2011 scala 1:5000

Area 6

Destinazione attuale: agricola/produttiva

Destinazione futura: Residenziale, commerciale, direzionale, servizi e

funzioni compatibili

Caratteristiche geologiche e geomorfologiche

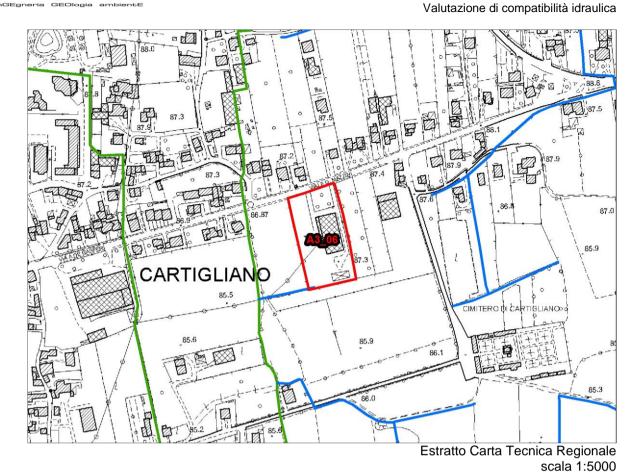
Zona pianeggiante; 1 ÷ 2 m di terreno limoso sabbioso su materasso ghiaioso-sabbioso prevalente, con grado di permeabilità medio-alto.

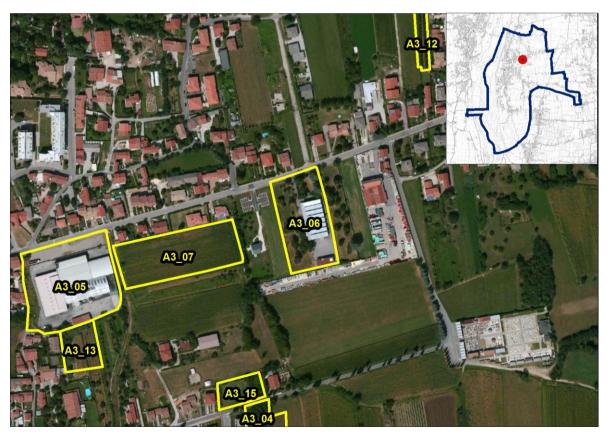
Caratteristiche idrogeologiche ed idrauliche attuali

Falda profonda 10 ÷ 15 m; non ipotizzabili fenomeni di esondazione o ristagno d'acqua.

Sottobacino scolante

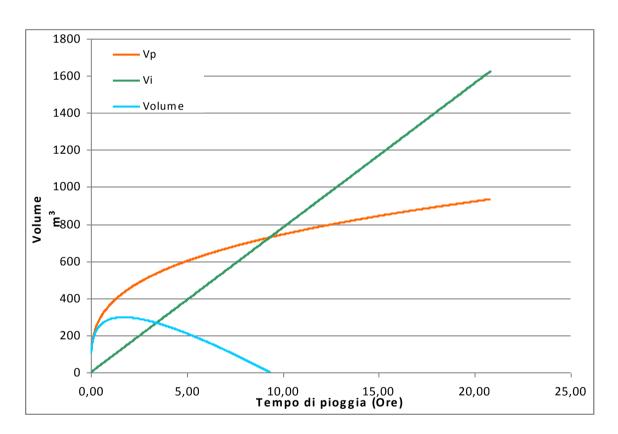
-


Misure di compensazione


АТО	area	Superfic	ie totale	Estens trasform territo	azione		ciente di lusso	Classe di appartenenza (Allegato A D.G.R. 2948/2009)	Volume di compensazione					
						attuale	progetto		Tr=50) anni	Tr=10	0 anni	Tr=20	0 anni
		m²	ha	m²	ha				m³	m³/ha	m³	m³/ha	m³	m³/ha
3	6	8336	0,83	8336	0,83	0,50	0,71	Modesta impermeabilizzazione potenziale	297	356	342	411	390	467

Note

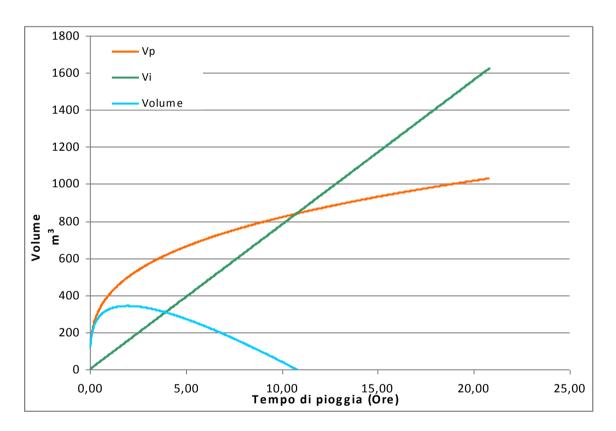
Data l'accessibilità al materasso ghiaioso dotato di buone caratteristiche drenanti, si ipotizza che il volume di laminazione possa essere ridotto utilizzando dispositivi di infiltrazione nel terreno. È ipotizzabile eventuale recapito su corpo idrico superficiale, previa verifica delle quote ed in accordo con le disposizioni impartite dal competente Consorzio di Bonifica.



Estratto Ortofoto – anno 2010-2011 scala 1:5000

a [mm/ore-n] 61,50 n 0,31 φ 0,71 S [m²] 8336,30 0,83363 Qout 26 l/s,ha

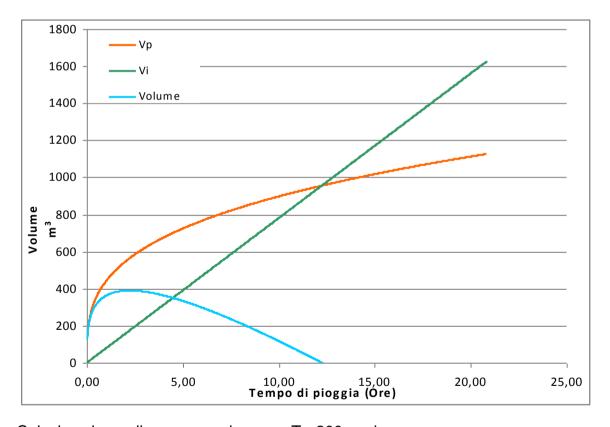
tp [min]	tp [ore]	h [mm]	u[l/s,ha]	Q [m ³ /s]	Vp[m³]	Vi[m³]	∆V[m³]
5	0,08	28,47	674,24	0,562	169	7	162
10	0,17	35,29	417,93	0,348	209	13	196
20	0,33	43,75	259,05	0,216	259	26	233
40	0,67	54,24	160,58	0,134	321	52	269
80	1,33	67,24	99,53	0,083	398	104	294
160	2,67	83,35	61,70	0,051	494	208	286
320	5,33	103,33	38,24	0,032	612	416	196
500	8,33	118,67	28,11	0,023	703	650	53
1000	16,67	147,11	17,42	0,015	871	1300	-429



Calcolo volume di compensazione per Tr=50 anni

a [mm/ore-n] 67,86 n 0,31 φ 0,71 S [m²] 8336,30 0,83363 Qout 26 l/s,ha

tp [min]	tp [ore]	h [mm]	u[l/s,ha]	Q [m ³ /s]	Vp[m³]	Vi[m³]	∆V[m³]
5	0,08	31,41	743,96	0,620	186	7	180
10	0,17	38,94	461,15	0,384	231	13	218
20	0,33	48,27	285,85	0,238	286	26	260
40	0,67	59,84	177,18	0,148	354	52	302
80	1,33	74,19	109,83	0,092	439	104	335
160	2,67	91,97	68,08	0,057	545	208	337
320	5,33	114,02	42,20	0,035	675	416	259
500	8,33	130,94	31,01	0,026	776	650	125
1000	16,67	162,33	19,22	0,016	962	1300	-339



Calcolo volume di compensazione per Tr=100 anni

a [mm/ore-n] 74,19
n 0,31
φ 0,71
S [m²] 8336,30 0,83363
Qout 26 l/s,ha

tp [min]	tp [ore]	h [mm]	u[l/s,ha]	Q [m³/s]	Vp[m³]	Vi[m³]	∆V[m³]
5	0,08	34,34	813,36	0,678	203	7	197
10	0,17	42,57	504,17	0,420	252	13	239
20	0,33	52,78	312,51	0,261	313	26	287
40	0,67	65,43	193,71	0,161	388	52	336
80	1,33	81,11	120,07	0,100	480	104	376
160	2,67	100,55	74,43	0,062	596	208	388
320	5,33	124,66	46,13	0,038	738	416	322
500	8,33	143,15	33,91	0,028	848	650	198
1000	16,67	177,47	21,02	0,018	1051	1300	-249

Calcolo volume di compensazione per Tr=200 anni

Area 7

Destinazione attuale: agricola

Destinazione futura: residenziale

Caratteristiche geologiche e geomorfologiche

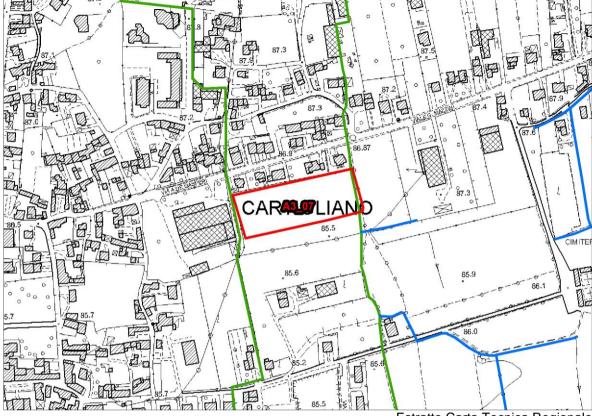
Zona pianeggiante; 1 ÷ 2 m di terreno limoso sabbioso su materasso ghiaioso-sabbioso prevalente, con grado di permeabilità medio-alto.

Caratteristiche idrogeologiche ed idrauliche attuali

Falda profonda 10 ÷ 15 m; non ipotizzabili fenomeni di esondazione o ristagno d'acqua.

Sottobacino scolante

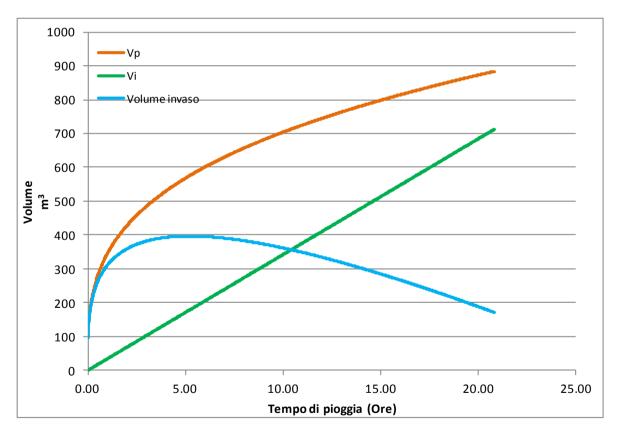
-


Misure di compensazione

ΔΤΩ	area	Supe	rficie	Estensione		Classe di appartenenza	Volume di compensazione					
AIO	aica	totale trasformazione		nazione	(Allegato A D.G.R. 2948/2009)	Tr=50 anni Tr=100 anni Tr=2			Tr=20	0 anni		
		m²	ha	m²	ha		m³	m³/ha	m³	m³/ha	m³	m³/ha
3	7	9488	0.95	9488	0.95	Modesta impermeabilizzazione potenziale	397	418	458	482	521	549

Note

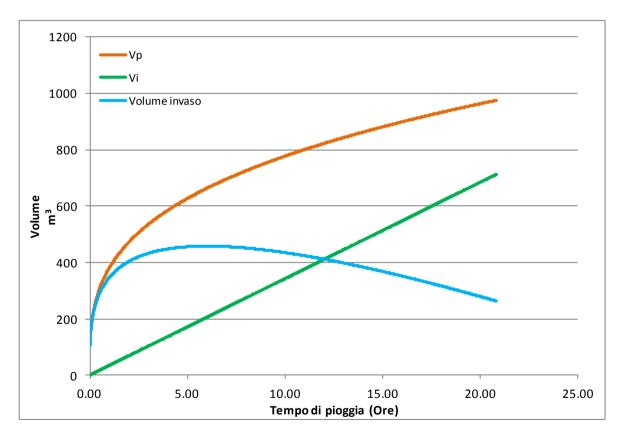
Data l'accessibilità al materasso ghiaioso dotato di buone caratteristiche drenanti, si ipotizza che il volume di laminazione possa essere ridotto utilizzando dispositivi di infiltrazione nel terreno. È ipotizzabile eventuale recapito su corpo idrico superficiale, previa verifica delle quote ed in accordo con le disposizioni impartite dal competente Consorzio di Bonifica.



Estratto Ortofoto – anno 2010-2011 scala 1:5000

a [mm/ore-n] 61.50 n 0.31 φ 0.59 S [m²] 9488.40 0.94884 Qout 10 l/s,ha

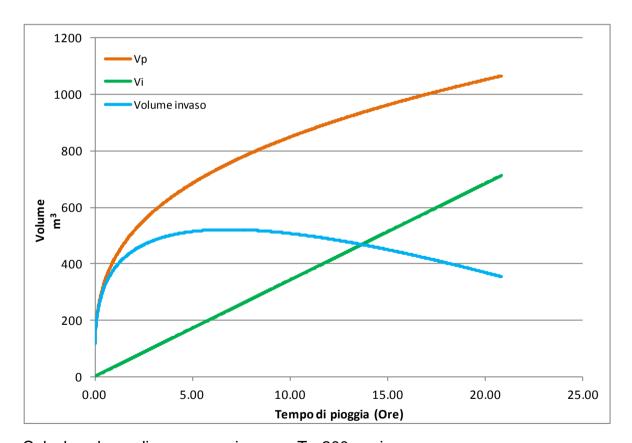
tp [min]	tp [ore]	h [mm]	u[l/s,ha]	Q [m ³ /s]	Vp[m³]	Vi[m³]	∆V[m³]
5	0.08	28.47	560.28	0.532	159	3	157
10	0.17	35.29	347.29	0.330	198	6	192
20	0.33	43.75	215.27	0.204	245	11	234
40	0.67	54.24	133.44	0.127	304	23	281
80	1.33	67.24	82.71	0.078	377	46	331
160	2.67	83.35	51.27	0.049	467	91	376
320	5.33	103.33	31.78	0.030	579	182	397
500	8.33	118.67	23.36	0.022	665	285	380
1000	16.67	147.11	14.48	0.014	824	569	255



Calcolo volume di compensazione per Tr=50 anni

a [mm/ore-n] 67.86 n 0.31 φ 0.59 S [m²] 9488.40 0.94884 Qout 10 l/s,ha

tp [min]	tp [ore]	h [mm]	u[l/s,ha]	Q [m ³ /s]	Vp[m³]	Vi[m³]	∆V[m³]
5	0.08	31.41	618.22	0.587	176	3	173
10	0.17	38.94	383.21	0.364	218	6	212
20	0.33	48.27	237.53	0.225	270	11	259
40	0.67	59.84	147.24	0.140	335	23	313
80	1.33	74.19	91.26	0.087	416	46	370
160	2.67	91.97	56.57	0.054	515	91	424
320	5.33	114.02	35.07	0.033	639	182	457
500	8.33	130.94	25.77	0.024	734	285	449
1000	16.67	162.33	15.97	0.015	909	569	340



Calcolo volume di compensazione per Tr=100 anni

a [mm/ore-n] 74.19
n 0.31
φ 0.59
S [m²] 9488.40 0.94884
Qout 10 l/s,ha

tp [min]	tp [ore]	h [mm]	u[l/s,ha]	Q [m ³ /s]	Vp[m³]	Vi[m³]	∆V[m³]
5	0.08	34.34	675.89	0.641	192	3	190
10	0.17	42.57	418.95	0.398	239	6	233
20	0.33	52.78	259.69	0.246	296	11	284
40	0.67	65.43	160.97	0.153	367	23	344
80	1.33	81.11	99.78	0.095	454	46	409
160	2.67	100.55	61.85	0.059	563	91	472
320	5.33	124.66	38.34	0.036	698	182	516
500	8.33	143.15	28.18	0.027	802	285	517
1000	16.67	177.47	17.46	0.017	994	569	425

Calcolo volume di compensazione per Tr=200 anni

Area 8

Destinazione attuale: agricola

Destinazione futura: residenziale, commerciale, direzionale, servizi e

funzioni compatibili

Caratteristiche geologiche e geomorfologiche

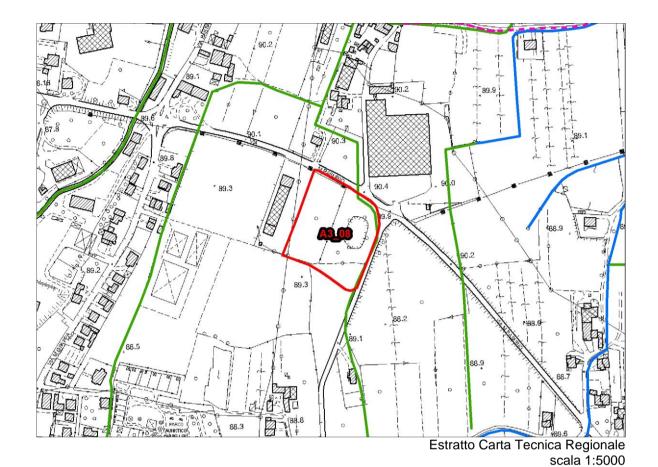
Zona pianeggiante; 1 ÷ 2 m di terreno limoso sabbioso su materasso ghiaioso-sabbioso prevalente, con grado di permeabilità medio-alto.

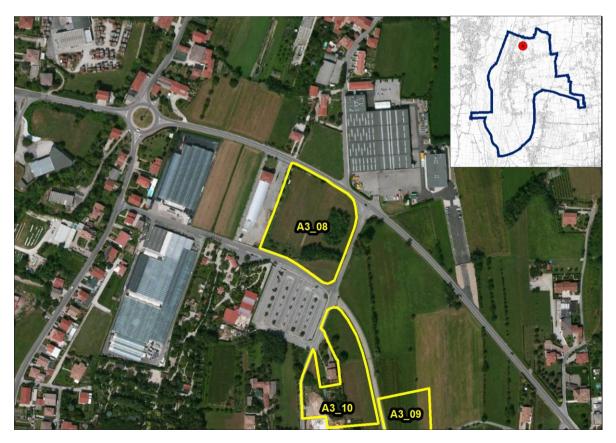
Caratteristiche idrogeologiche ed idrauliche attuali

Falda profonda 10 ÷ 15 m; non ipotizzabili fenomeni di esondazione o ristagno d'acqua.

Sottobacino scolante

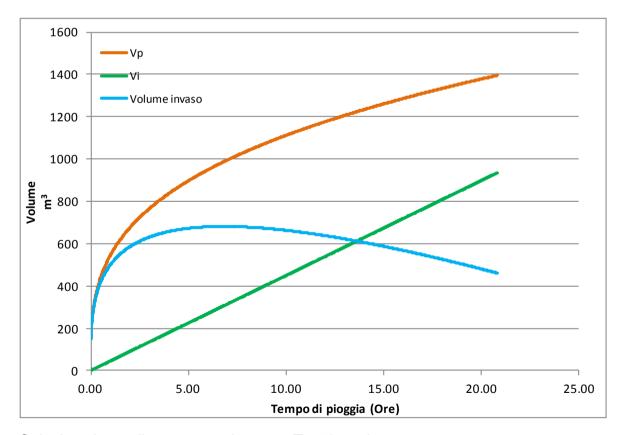
-


Misure di compensazione


ΔΤΟ	area	Supe	rficie	Estensione		Classe di appartenenza	Volume di compensazione						
AIO	area	totale trasformazione		nazione	(Allegato A D.G.R. 2948/2009)		Tr=50 anni		Tr=100 anni		0 anni		
		m²	ha	m²	ha		m³	m³/ha	m³	m³/ha	m³	m³/ha	
3	8	12451	1.25	12451	1.25	Significativa impermabilizzione superficiale	681	547	785	631	894	718	

Note

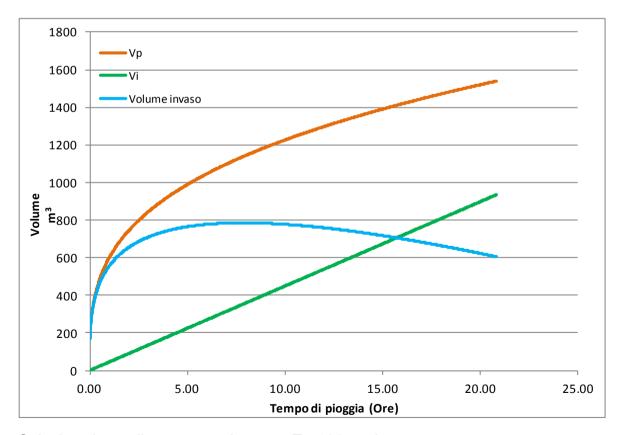
Data l'accessibilità al materasso ghiaioso dotato di buone caratteristiche drenanti, si ipotizza che il volume di laminazione possa essere ridotto utilizzando dispositivi di infiltrazione nel terreno. È ipotizzabile eventuale recapito su corpo idrico superficiale, previa verifica delle quote ed in accordo con le disposizioni impartite dal competente Consorzio di Bonifica.



Estratto Ortofoto – anno 2010-2011 scala 1:5000

a [mm/ore-n] 61.50 n 0.31 φ 0.71 S [m²] 12451.00 1.2451 Qout 10 l/s,ha

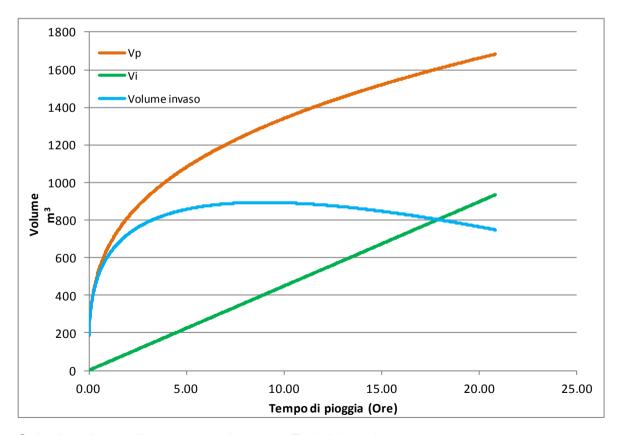
tp [min]	tp [ore]	h [mm]	u[l/s,ha]	Q [m ³ /s]	Vp[m³]	Vi[m³]	∆V[m³]
5	0.08	28.47	674.24	0.839	252	4	248
10	0.17	35.29	417.93	0.520	312	7	305
20	0.33	43.75	259.05	0.323	387	15	372
40	0.67	54.24	160.58	0.200	480	30	450
80	1.33	67.24	99.53	0.124	595	60	535
160	2.67	83.35	61.70	0.077	737	120	618
320	5.33	103.33	38.24	0.048	914	239	675
500	8.33	118.67	28.11	0.035	1050	374	676
1000	16.67	147.11	17.42	0.022	1302	747	554



Calcolo volume di compensazione per Tr=50 anni

a [mm/ore-n] 67.86 n 0.31 φ 0.71 S [m²] 12451.00 1.2451 Qout 10 l/s,ha

tp [min]	tp [ore]	h [mm]	u[l/s,ha]	Q [m ³ /s]	Vp[m³]	Vi[m³]	∆V[m³]	
5	0.08	31.41	743.96	0.926	278	4	274	
10	0.17	38.94	461.15	0.574	345	7	337	
20	0.33	48.27	285.85	0.356	427	15	412	
40	0.67	59.84	177.18	0.221	529	30	500	
80	1.33	74.19	109.83	0.137	656	60	597	
160	2.67	91.97	68.08	0.085	814	120	694	
320	5.33	114.02	42.20	0.053	1009	239	770	
500	8.33	130.94	31.01	0.039	1158	374	785	
1000	16.67	162.33	19.22	0.024	1436	747	689	



Calcolo volume di compensazione per Tr=100 anni

a [mm/ore-n] 74.19
n 0.31
φ 0.71
S [m²] 12451.00 1.2451
Qout 10 l/s,ha

tp [min]	tp [ore]	h [mm]	u[l/s,ha]	Q [m ³ /s]	Vp[m³]	Vi[m³]	∆V[m³]	
5	0.08	34.34	813.36	1.013	304	4	300	
10	0.17	42.57	504.17	0.628	377	7	369	
20	0.33	52.78	312.51	0.389	467	15	452	
40	0.67	65.43	193.71	0.241	579	30	549	
80	1.33	81.11	120.07	0.150	718	60	658	
160	2.67	100.55	74.43	0.093	890	120	770	
320	5.33	124.66	46.13	0.057	1103	239	864	
500	8.33	143.15	33.91	0.042	1267	374	893	
1000	16.67	177.47	21.02	0.026	1570	747	823	

Calcolo volume di compensazione per Tr=200 anni

Area 9

Destinazione attuale: agricola

Destinazione futura: residenziale

Caratteristiche geologiche e geomorfologiche

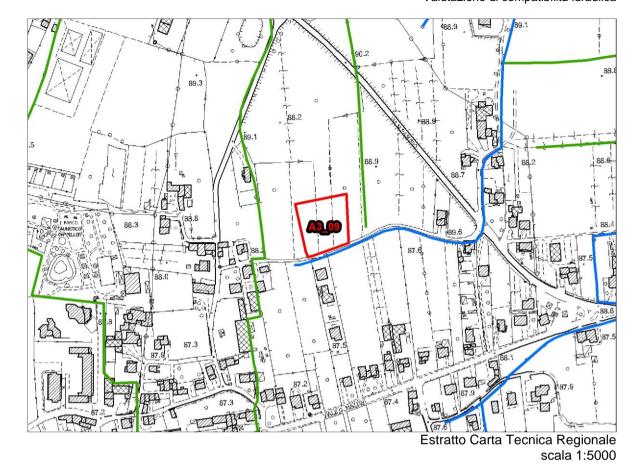
Zona pianeggiante; 1 ÷ 2 m di terreno limoso sabbioso su materasso ghiaioso-sabbioso prevalente, con grado di permeabilità medio-alto.

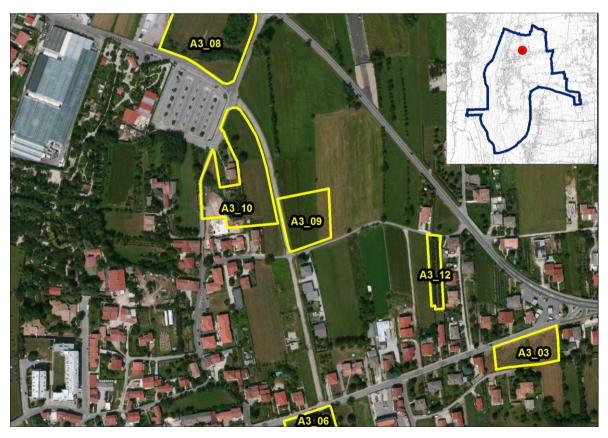
Caratteristiche idrogeologiche ed idrauliche attuali

Falda profonda 12 ÷ 17 m; non ipotizzabili fenomeni di esondazione o ristagno d'acqua.

Sottobacino scolante

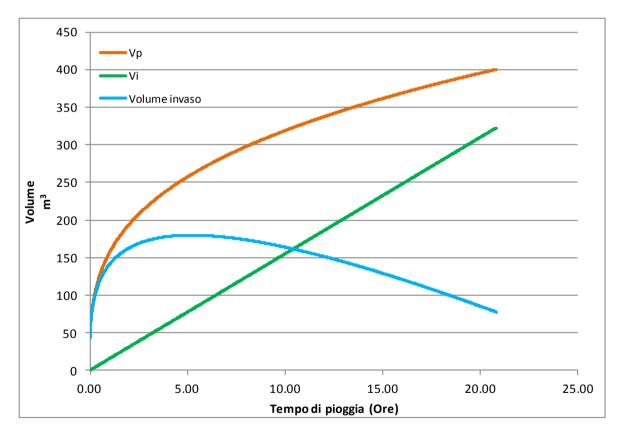
_


Misure di compensazione


ATO	area	Supe	Superficie Estension		sione	Classe di appartenenza	Volume di compensazione					
AIO	totale		trasformazione		(Allegato A D.G.R. 2948/2009)	Tr=50 anni Tr=100 anni Tr=200		0 anni				
		m²	ha	m²	ha		m³	m³/ha	m³	m³/ha	m³	m³/ha
3	9	4298	0.43	4298	0.43	Modesta impermeabilizzazione potenziale	180	418	207	482	236	549

Note

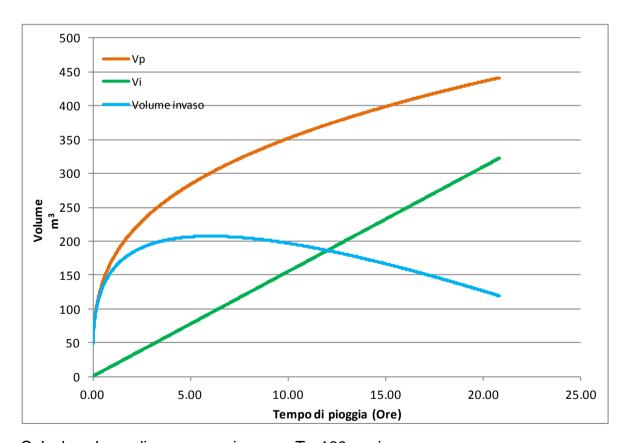
Data l'accessibilità al materasso ghiaioso dotato di buone caratteristiche drenanti, si ipotizza che il volume di laminazione possa essere ridotto utilizzando dispositivi di infiltrazione nel terreno.



Estratto Ortofoto – anno 2010-2011 scala 1:5000

a [mm/ore-n] 61.50 n 0.31 φ 0.59 S [m²] 4297.50 0.42975 Qout 10 l/s,ha

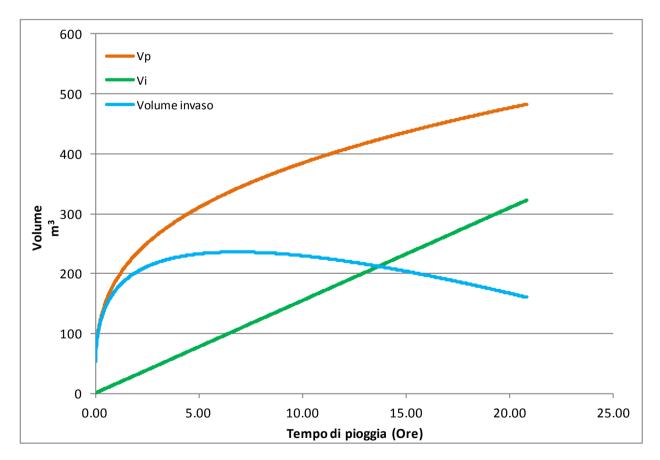
tp [min]	tp [ore]	h [mm]	u[l/s,ha]	Q [m ³ /s]	Vp[m³]	Vi[m³]	∆V[m³]
5	0.08	28.47	560.28	0.241	72	1	71
10	0.17	35.29	347.29	0.149	90	3	87
20	0.33	43.75	215.27	0.093	111	5	106
40	0.67	54.24	133.44	0.057	138	10	127
80	1.33	67.24	82.71	0.036	171	21	150
160	2.67	83.35	51.27	0.022	212	41	170
320	5.33	103.33	31.78	0.014	262	83	180
500	8.33	118.67	23.36	0.010	301	129	172
1000	16.67	147.11	14.48	0.006	373	258	115



Calcolo volume di compensazione per Tr=50 anni

a [mm/ore-n] 67.86 n 0.31 φ 0.59 S [m²] 4297.50 0.42975 Qout 10 l/s,ha

tp [min]	tp [ore]	h [mm]	u[l/s,ha]	Q [m ³ /s]	Vp[m³]	Vi[m³]	∆V[m³]
5	0.08	31.41	618.22	0.266	80	1	78
10	0.17	38.94	383.21	0.165	99	3	96
20	0.33	48.27	237.53	0.102	122	5	117
40	0.67	59.84	147.24	0.063	152	10	142
80	1.33	74.19	91.26	0.039	188	21	168
160	2.67	91.97	56.57	0.024	233	41	192
320	5.33	114.02	35.07	0.015	289	83	207
500	8.33	130.94	25.77	0.011	332	129	203
1000	16.67	162.33	15.97	0.007	412	258	154



Calcolo volume di compensazione per Tr=100 anni

a [mm/ore-n] 74.19
n 0.31
φ 0.59
S [m²] 4297.50 0.42975
Qout 10 l/s,ha

tp [min]	tp [ore]	h [mm]	u[l/s,ha]	Q [m ³ /s]	Vp[m³]	Vi[m³]	∆V[m³]
5	0.08	34.34	675.89	0.290	87	1	86
10	0.17	42.57	418.95	0.180	108	3	105
20	0.33	52.78	259.69	0.112	134	5	129
40	0.67	65.43	160.97	0.069	166	10	156
80	1.33	81.11	99.78	0.043	206	21	185
160	2.67	100.55	61.85	0.027	255	41	214
320	5.33	124.66	38.34	0.016	316	83	234
500	8.33	143.15	28.18	0.012	363	129	234
1000	16.67	177.47	17.46	0.008	450	258	192

Calcolo volume di compensazione per Tr=200 anni

A.T.O. 3

Area 10

Destinazione attuale: agricola

Destinazione futura: residenziale

Caratteristiche geologiche e geomorfologiche

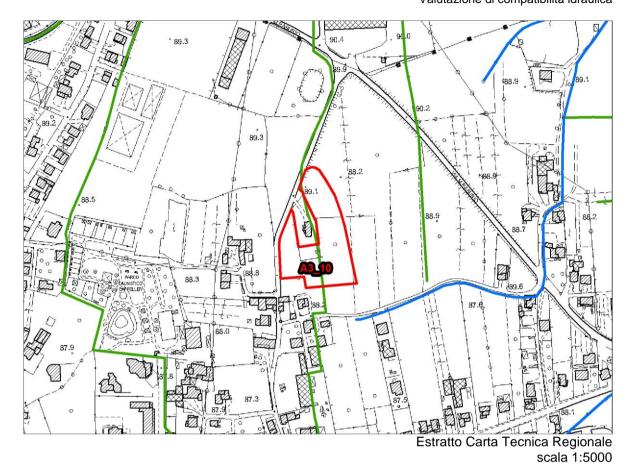
Zona pianeggiante; 1 ÷ 2 m di terreno limoso sabbioso su materasso ghiaioso-sabbioso prevalente, con grado di permeabilità medio-alto.

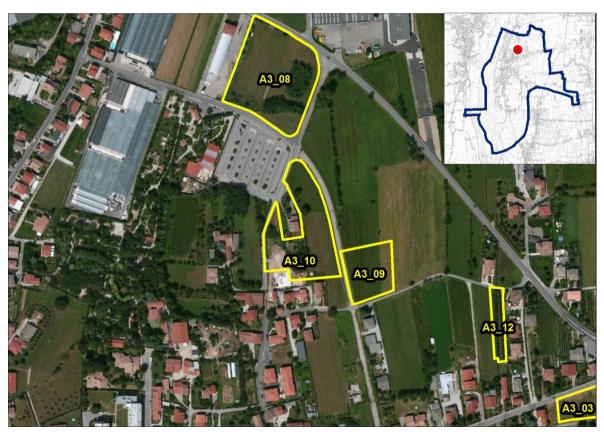
Caratteristiche idrogeologiche ed idrauliche attuali

Falda profonda 12 ÷ 17 m; non ipotizzabili fenomeni di esondazione o ristagno d'acqua.

Sottobacino scolante

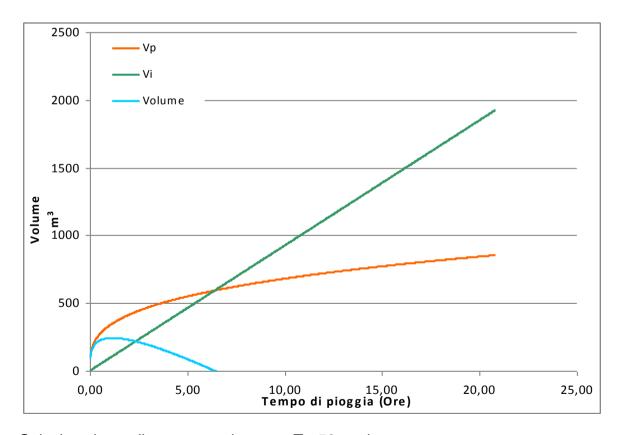
-


Misure di compensazione


АТО	area	Superfic	ie totale	Estens trasform territo	azione		ciente di lusso	Classe di appartenenza (Allegato A D.G.R. 2948/2009)		Volu	ıme di co	mpensaz	ione	
						attuale	progetto		Tr=50 anni Tr=100 anni Tr=200		0 anni			
		m²	ha	m²	ha				m³	m³/ha	m³	m³/ha	m³	m³/ha
3	10	9173	0.92	9173	0.92	0.10	0.59	Modesta impermeabilizzazione potenziale	242	263	279	304	317	346

Note

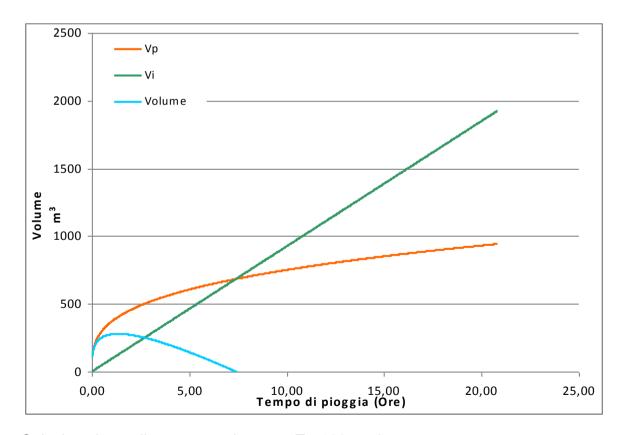
Data l'accessibilità al materasso ghiaioso dotato di buone caratteristiche drenanti, si ipotizza che il volume di laminazione possa essere ridotto utilizzando dispositivi di infiltrazione nel terreno. È ipotizzabile eventuale recapito su corpo idrico superficiale, previa verifica delle quote ed in accordo con le disposizioni impartite dal competente Consorzio di Bonifica.



Estratto Ortofoto – anno 2010-2011 scala 1:5000

a [mm/ore-n] 61,50 n 0,31 φ 0,59 S [m²] 9173,20 0,91732 Qout 28 l/s,ha

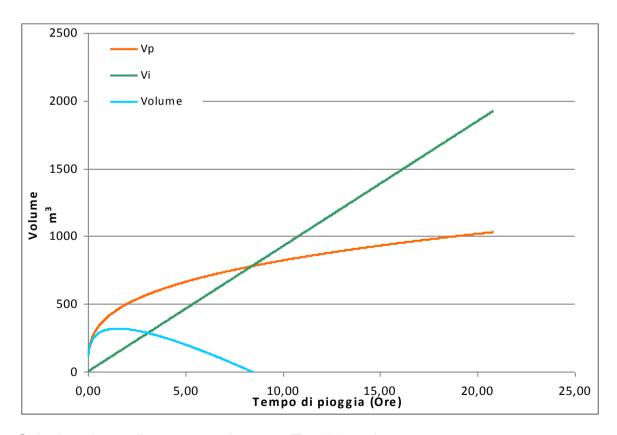
tp [min]	tp [ore]	h [mm]	u[l/s,ha]	Q [m ³ /s]	Vp[m³]	Vi[m³]	∆V[m³]
5	0,08	28,47	560,28	0,514	154	8	146
10	0,17	35,29	347,29	0,319	191	15	176
20	0,33	43,75	215,27	0,197	237	31	206
40	0,67	54,24	133,44	0,122	294	62	232
80	1,33	67,24	82,71	0,076	364	123	241
160	2,67	83,35	51,27	0,047	451	247	205
320	5,33	103,33	31,78	0,029	560	493	67
500	8,33	118,67	23,36	0,021	643	771	-128
1000	16,67	147,11	14,48	0,013	797	1541	-744



Calcolo volume di compensazione per Tr=50 anni

a [mm/ore-n] 67,86 n 0,31 φ 0,59 S [m²] 9173,20 0,91732 Qout 28 l/s,ha

tp [min]	tp [ore]	h [mm]	u[l/s,ha]	Q [m³/s]	Vp[m³]	Vi[m³]	∆V[m³]
5	0,08	31,41	618,22	0,567	170	8	162
10	0,17	38,94	383,21	0,352	211	15	196
20	0,33	48,27	237,53	0,218	261	31	231
40	0,67	59,84	147,24	0,135	324	62	263
80	1,33	74,19	91,26	0,084	402	123	279
160	2,67	91,97	56,57	0,052	498	247	252
320	5,33	114,02	35,07	0,032	618	493	124
500	8,33	130,94	25,77	0,024	709	771	-61
1000	16,67	162,33	15,97	0,015	879	1541	-662



Calcolo volume di compensazione per Tr=100 anni

a [mm/ore-n] 74,19
n 0,31
φ 0,59
S [m²] 9173,20 0,91732
Qout 28 l/s,ha

tp [min]	tp [ore]	h [mm]	u[l/s,ha]	Q [m ³ /s]	Vp[m³]	Vi[m³]	∆V[m³]
5	0,08	34,34	675,89	0,620	186	8	178
10	0,17	42,57	418,95	0,384	231	15	215
20	0,33	52,78	259,69	0,238	286	31	255
40	0,67	65,43	160,97	0,148	354	62	293
80	1,33	81,11	99,78	0,092	439	123	316
160	2,67	100,55	61,85	0,057	545	247	298
320	5,33	124,66	38,34	0,035	675	493	182
500	8,33	143,15	28,18	0,026	775	771	5
1000	16,67	177,47	17,46	0,016	961	1541	-580

Calcolo volume di compensazione per Tr=200 anni

A.	Т	\cap	3
A.	Ι.	v.	J

Area 12

Destinazione attuale: agricola

Destinazione futura: residenziale

Caratteristiche geologiche e geomorfologiche

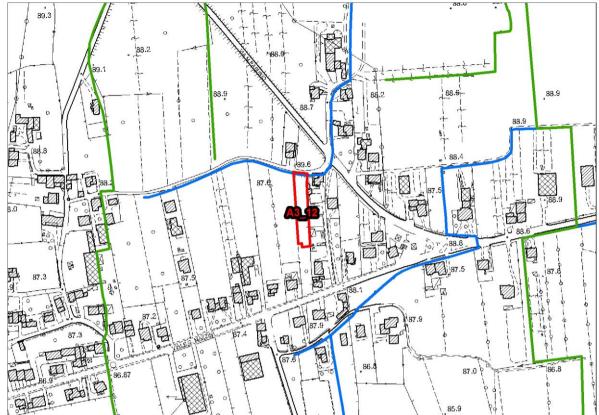
Zona pianeggiante; 1 ÷ 2 m di terreno limoso sabbioso su materasso ghiaiososabbioso prevalente, con grado di permeabilità medio-alto.

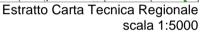
Caratteristiche idrogeologiche ed idrauliche attuali

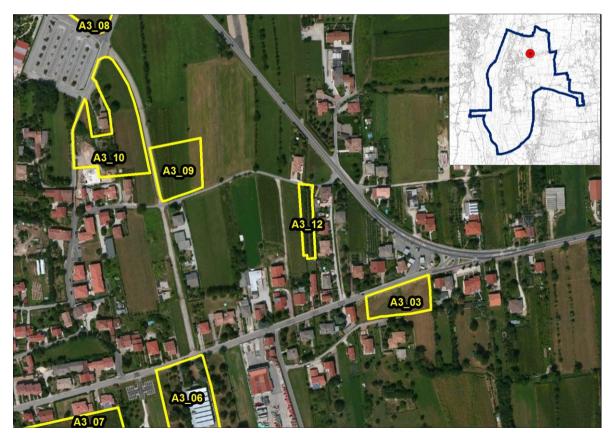
Falda profonda 10 ÷ 15 m; non ipotizzabili fenomeni di esondazione o ristagno d'acqua.

Sottobacino scolante

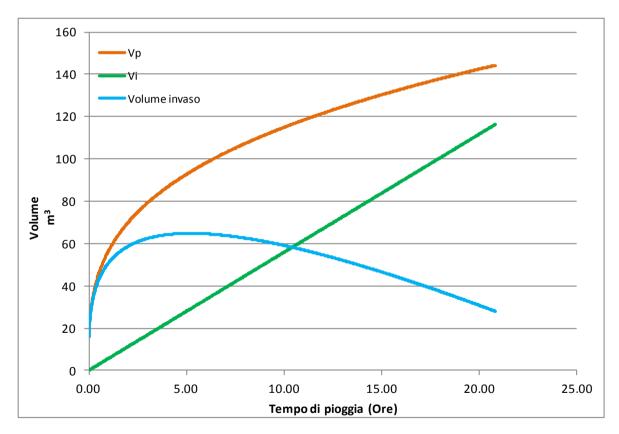
_


Misure di compensazione


ATO	area	Supe	rficie	Esten	sione	Classe di appartenenza	Volume di compensazione					
AIO	area	tota	ale	trasforn	nazione	(Allegato A D.G.R. 2948/2009)	Tr=50) anni	Tr=10	0 anni	Tr=20	0 anni
		m²	ha	m²	ha		m³	m³/ha	m³	m³/ha	m³	m³/ha
3	12	1549	0.15	1549	0.15	Modesta impermeabilizzazione potenziale	65	418	75	482	85	549


Note

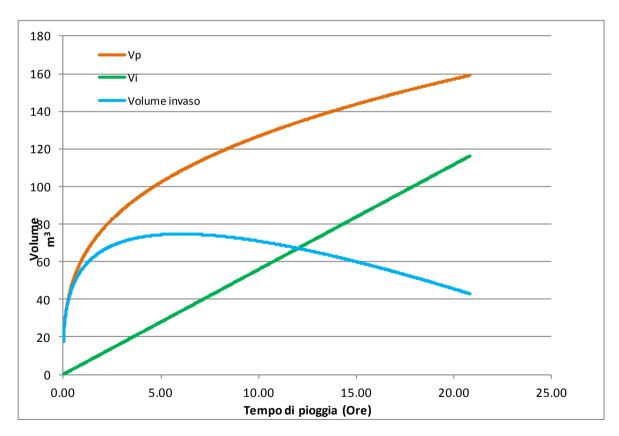
Data l'accessibilità al materasso ghiaioso dotato di buone caratteristiche drenanti, si ipotizza che il volume di laminazione possa essere ridotto utilizzando dispositivi di infiltrazione nel terreno.



Estratto Ortofoto – anno 2010-2011 scala 1:5000

a [mm/ore-n] 61.50 n 0.31 φ 0.59 S [m²] 1549.00 0.1549 Qout 10 l/s,ha

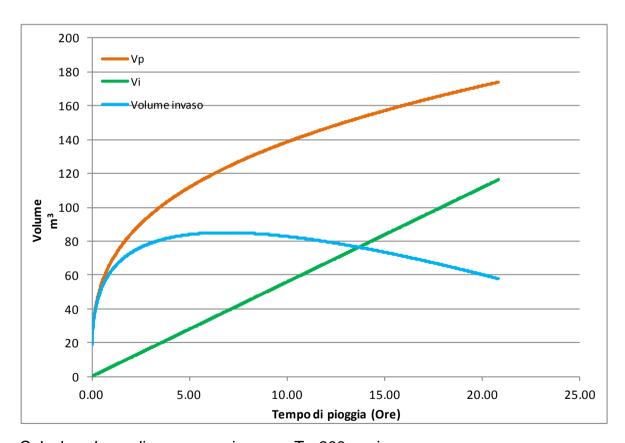
tp [min]	tp [ore]	h [mm]	u[l/s,ha]	Q [m ³ /s]	Vp[m³]	Vi[m³]	∆V[m³]
5	0.08	28.47	560.28	0.087	26	0	26
10	0.17	35.29	347.29	0.054	32	1	31
20	0.33	43.75	215.27	0.033	40	2	38
40	0.67	54.24	133.44	0.021	50	4	46
80	1.33	67.24	82.71	0.013	61	7	54
160	2.67	83.35	51.27	0.008	76	15	61
320	5.33	103.33	31.78	0.005	95	30	65
500	8.33	118.67	23.36	0.004	109	46	62
1000	16.67	147.11	14.48	0.002	135	93	42



Calcolo volume di compensazione per Tr=50 anni

a [mm/ore-n] 67.86 n 0.31 φ 0.59 S [m²] 1549.00 0.1549 Qout 10 l/s,ha

tp [min]	tp [ore]	h [mm]	u[l/s,ha]	Q [m ³ /s]	Vp[m³]	Vi[m³]	∆V[m³]
5	0.08	31.41	618.22	0.096	29	0	28
10	0.17	38.94	383.21	0.059	36	1	35
20	0.33	48.27	237.53	0.037	44	2	42
40	0.67	59.84	147.24	0.023	55	4	51
80	1.33	74.19	91.26	0.014	68	7	60
160	2.67	91.97	56.57	0.009	84	15	69
320	5.33	114.02	35.07	0.005	104	30	75
500	8.33	130.94	25.77	0.004	120	46	73
1000	16.67	162.33	15.97	0.002	148	93	56



Calcolo volume di compensazione per Tr=100 anni

a [mm/ore-n] 74.19 n 0.31 φ 0.59 S [m²] 1549.00 0.1549 Qout 10 l/s,ha

tp [min]	tp [ore]	h [mm]	u[l/s,ha]	Q [m ³ /s]	Vp[m³]	Vi[m³]	∆V[m³]
5	0.08	34.34	675.89	0.105	31	0	31
10	0.17	42.57	418.95	0.065	39	1	38
20	0.33	52.78	259.69	0.040	48	2	46
40	0.67	65.43	160.97	0.025	60	4	56
80	1.33	81.11	99.78	0.015	74	7	67
160	2.67	100.55	61.85	0.010	92	15	77
320	5.33	124.66	38.34	0.006	114	30	84
500	8.33	143.15	28.18	0.004	131	46	84
1000	16.67	177.47	17.46	0.003	162	93	69

Calcolo volume di compensazione per Tr=200 anni

A.T.O. 3

Area 13

Destinazione attuale: agricola

Destinazione futura: residenziale

Caratteristiche geologiche e geomorfologiche

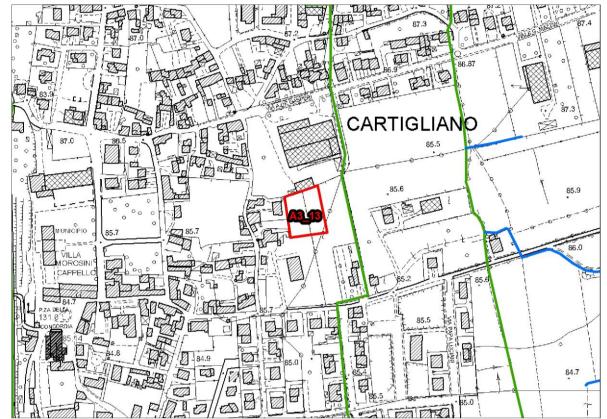
Zona pianeggiante; 1 ÷ 2 m di terreno limoso sabbioso su materasso ghiaioso-sabbioso prevalente, con grado di permeabilità medio-alto.

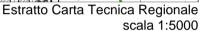
Caratteristiche idrogeologiche ed idrauliche attuali

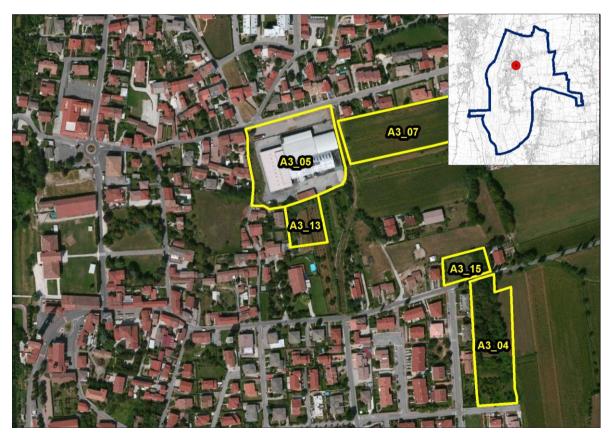
Falda profonda 10 ÷ 15 m; non ipotizzabili fenomeni di esondazione o ristagno d'acqua.

Sottobacino scolante

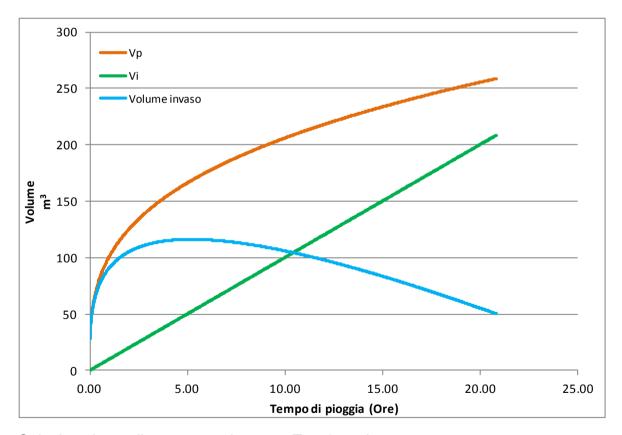
_


Misure di compensazione


ATO	area Superficie Estensione Class		Classe di appartenenza	V	olume	di co	mpens	azion	e			
AIO	aica	totale trasformazi		nazione	(Allegato A D.G.R. 2948/2009)) anni	Tr=10	0 anni	Tr=20	0 anni	
		m²	ha	m²	ha		m³	m³/ha	m³	m³/ha	m³	m³/ha
3	13	2778	0.28	2778	0.28	Modesta impermeabilizzazione potenziale	116	418	134	482	152	549


Note

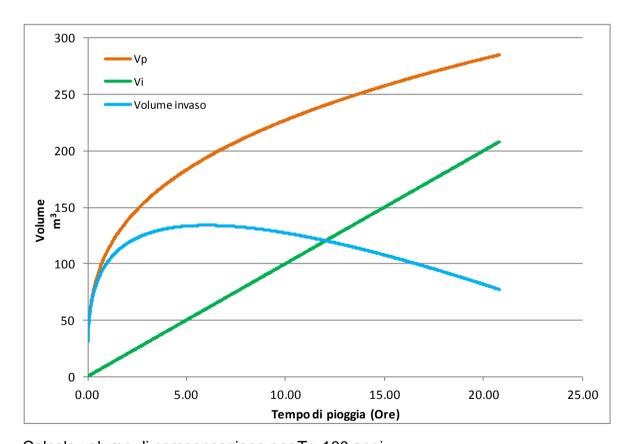
Data l'accessibilità al materasso ghiaioso dotato di buone caratteristiche drenanti, si ipotizza che il volume di laminazione possa essere ridotto utilizzando dispositivi di infiltrazione nel terreno. È ipotizzabile eventuale recapito su corpo idrico superficiale, previa verifica delle quote ed in accordo con le disposizioni impartite dal competente Consorzio di Bonifica.



Estratto Ortofoto – anno 2010-2011 scala 1:5000

a [mm/ore-n] 61.50 n 0.31 φ 0.59 S [m²] 2777.60 0.27776 Qout 10 l/s,ha

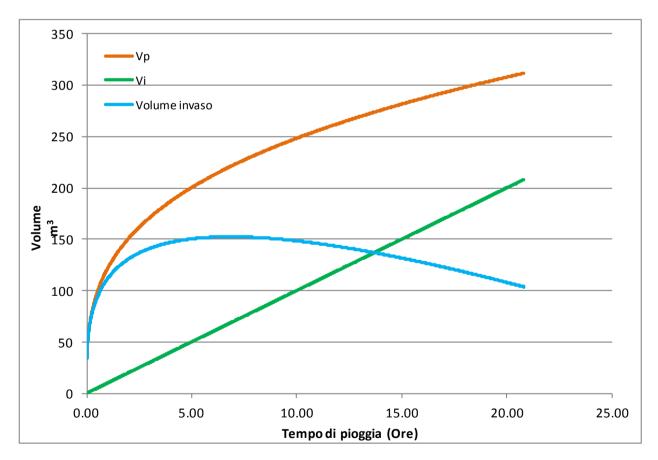
tp [min]	tp [ore]	h [mm]	u[l/s,ha]	Q [m ³ /s]	Vp[m³]	Vi[m³]	∆V[m³]
5	0.08	28.47	560.28	0.156	47	1	46
10	0.17	35.29	347.29	0.096	58	2	56
20	0.33	43.75	215.27	0.060	72	3	68
40	0.67	54.24	133.44	0.037	89	7	82
80	1.33	67.24	82.71	0.023	110	13	97
160	2.67	83.35	51.27	0.014	137	27	110
320	5.33	103.33	31.78	0.009	169	53	116
500	8.33	118.67	23.36	0.006	195	83	111
1000	16.67	147.11	14.48	0.004	241	167	75



Calcolo volume di compensazione per Tr=50 anni

a [mm/ore-n] 67.86 n 0.31 φ 0.59 S [m²] 2777.60 0.27776 Qout 10 l/s,ha

tp [min]	tp [ore]	h [mm]	u[l/s,ha]	Q [m ³ /s]	Vp[m³]	Vi[m³]	∆V[m³]
5	0.08	31.41	618.22	0.172	52	1	51
10	0.17	38.94	383.21	0.106	64	2	62
20	0.33	48.27	237.53	0.066	79	3	76
40	0.67	59.84	147.24	0.041	98	7	91
80	1.33	74.19	91.26	0.025	122	13	108
160	2.67	91.97	56.57	0.016	151	27	124
320	5.33	114.02	35.07	0.010	187	53	134
500	8.33	130.94	25.77	0.007	215	83	131
1000	16.67	162.33	15.97	0.004	266	167	100



Calcolo volume di compensazione per Tr=100 anni

a [mm/ore-n] 74.19
n 0.31
φ 0.59
S [m²] 2777.60 0.27776
Qout 10 l/s,ha

tp [min]	tp [ore]	h [mm]	u[l/s,ha]	Q [m ³ /s]	Vp[m³]	Vi[m³]	∆V[m³]
5	0.08	34.34	675.89	0.188	56	1	55
10	0.17	42.57	418.95	0.116	70	2	68
20	0.33	52.78	259.69	0.072	87	3	83
40	0.67	65.43	160.97	0.045	107	7	101
80	1.33	81.11	99.78	0.028	133	13	120
160	2.67	100.55	61.85	0.017	165	27	138
320	5.33	124.66	38.34	0.011	204	53	151
500	8.33	143.15	28.18	0.008	235	83	151
1000	16.67	177.47	17.46	0.005	291	167	124

Calcolo volume di compensazione per Tr=200 anni

A.T.O. 3

Area 15

Destinazione attuale: agricola

Destinazione futura: residenziale

Caratteristiche geologiche e geomorfologiche

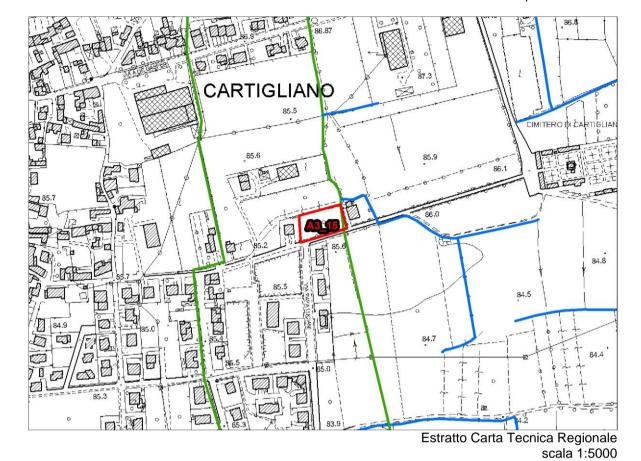
Zona pianeggiante; 1 ÷ 2 m di terreno limoso sabbioso su materasso ghiaioso-sabbioso prevalente, con grado di permeabilità medio-alto.

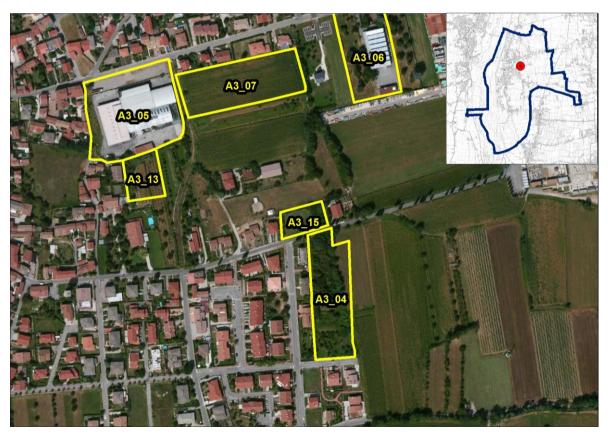
Caratteristiche idrogeologiche ed idrauliche attuali

Falda profonda 10 ÷ 15 m; non ipotizzabili fenomeni di esondazione o ristagno d'acqua.

Sottobacino scolante

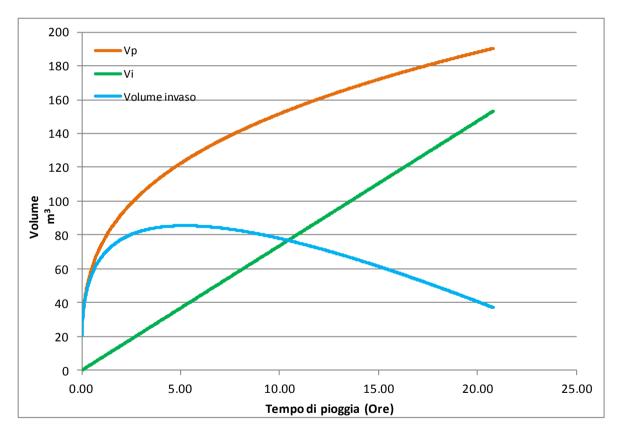
_


Misure di compensazione


ATO	area	Supe	rficie	Esten	sione	Classe di appartenenza	V	olume	di co	mpens	azion	e
AIO	area	totale tras		trasforn	nazione	(Allegato A D.G.R. 2948/2009)) anni	Tr=10	0 anni	Tr=20	0 anni
		m²	ha	m²	ha		m³	m³/ha	m³	m³/ha	m³	m³/ha
3	15	2045	0.20	2045	0.20	Modesta impermeabilizzazione potenziale	86	418	99	482	112	549

Note

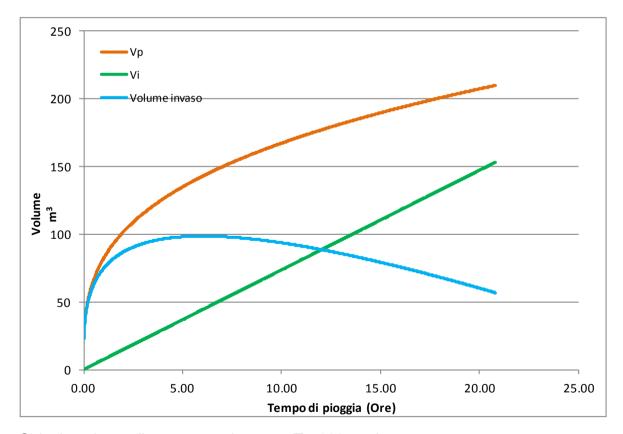
Data l'accessibilità al materasso ghiaioso dotato di buone caratteristiche drenanti, si ipotizza che il volume di laminazione possa essere ridotto utilizzando dispositivi di infiltrazione nel terreno. È ipotizzabile eventuale recapito su corpo idrico superficiale, previa verifica delle quote ed in accordo con le disposizioni impartite dal competente Consorzio di Bonifica.



Estratto Ortofoto – anno 2006-2007 scala 1:5000

a [mm/ore-n] 61.50 n 0.31 φ 0.59 S [m²] 2044.90 0.20449 Qout 10 l/s,ha

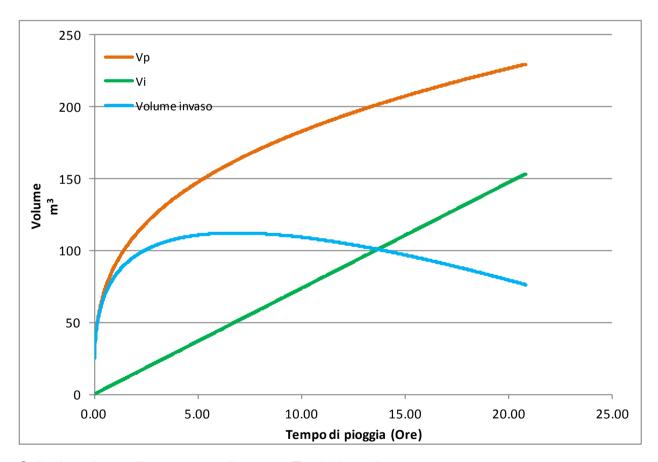
tp [min]	tp [ore]	h [mm]	u[l/s,ha]	Q [m ³ /s]	Vp[m³]	Vi[m³]	∆V[m³]
5	0.08	28.47	560.28	0.115	34	1	34
10	0.17	35.29	347.29	0.071	43	1	41
20	0.33	43.75	215.27	0.044	53	2	50
40	0.67	54.24	133.44	0.027	65	5	61
80	1.33	67.24	82.71	0.017	81	10	71
160	2.67	83.35	51.27	0.010	101	20	81
320	5.33	103.33	31.78	0.006	125	39	86
500	8.33	118.67	23.36	0.005	143	61	82
1000	16.67	147.11	14.48	0.003	178	123	55



Calcolo volume di compensazione per Tr=50 anni

[mm/ore-ι 67.86 n 0.31 φ 0.59 S [m²] 2044.90 0.20449 Qout 10 l/s,ha

tp [min]	tp [ore]	h [mm]	u[l/s,ha]	Q [m ³ /s]	Vp[m³]	Vi[m³]	∆V[m³]
5	0.08	31.41	618.22	0.126	38	1	37
10	0.17	38.94	383.21	0.078	47	1	46
20	0.33	48.27	237.53	0.049	58	2	56
40	0.67	59.84	147.24	0.030	72	5	67
80	1.33	74.19	91.26	0.019	90	10	80
160	2.67	91.97	56.57	0.012	111	20	91
320	5.33	114.02	35.07	0.007	138	39	98
500	8.33	130.94	25.77	0.005	158	61	97
1000	16.67	162.33	15.97	0.003	196	123	73



Calcolo volume di compensazione per Tr=100 anni

a [mm/ore-n] 74.19
n 0.31
φ 0.59
S [m²] 2044.90 0.20449
Qout 10 l/s,ha

tp [min]	tp [ore]	h [mm]	u[l/s,ha]	Q [m ³ /s]	Vp[m³]	Vi[m³]	∆V[m³]
5	0.08	34.34	675.89	0.138	41	1	41
10	0.17	42.57	418.95	0.086	51	1	50
20	0.33	52.78	259.69	0.053	64	2	61
40	0.67	65.43	160.97	0.033	79	5	74
80	1.33	81.11	99.78	0.020	98	10	88
160	2.67	100.55	61.85	0.013	121	20	102
320	5.33	124.66	38.34	0.008	151	39	111
500	8.33	143.15	28.18	0.006	173	61	112
1000	16.67	177.47	17.46	0.004	214	123	92

Calcolo volume di compensazione per Tr=200 anni

A.T.O. 3

Area 17

Destinazione attuale: agricola

Destinazione futura: residenziale

Caratteristiche geologiche e geomorfologiche

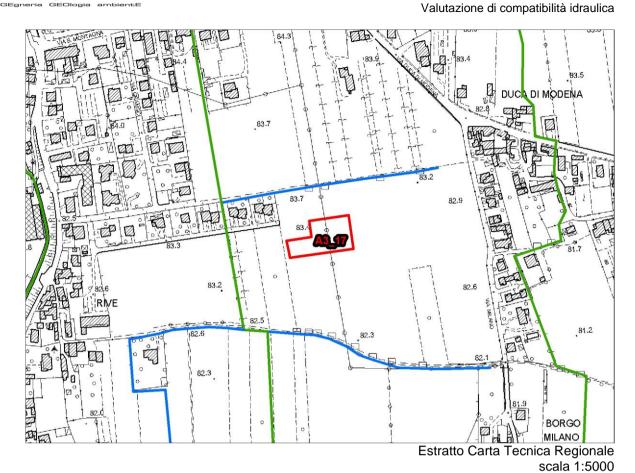
Zona pianeggiante; 1 ÷ 2 m di terreno limoso sabbioso su materasso ghiaioso-sabbioso prevalente, con grado di permeabilità medio-alto.

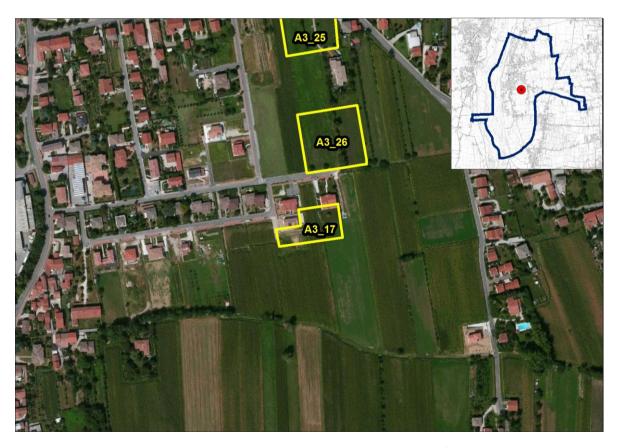
Caratteristiche idrogeologiche ed idrauliche attuali

Falda profonda 10 ÷ 15 m; non ipotizzabili fenomeni di esondazione o ristagno d'acqua.

Sottobacino scolante

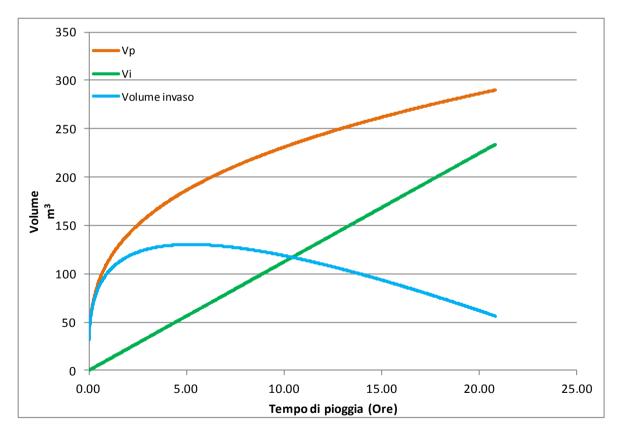
-


Misure di compensazione


АТО	area Superficie Estensione			Classe di appartenenza	Volume di compensazione Tr=50 anni Tr=100 anni Tr=200 anni							
		totale trasformaz		nazione	(Allegato A D.G.R. 2948/2009)	Tr=50) anni	Tr=10	0 anni	Tr=20	0 anni	
		m²	ha	m²	ha		m³	m³/ha	m³	m³/ha	m³	m³/ha
3	17	3113	0.31	3113	0.31	Modesta impermeabilizzazione potenziale	130	418	150	482	171	549

Note

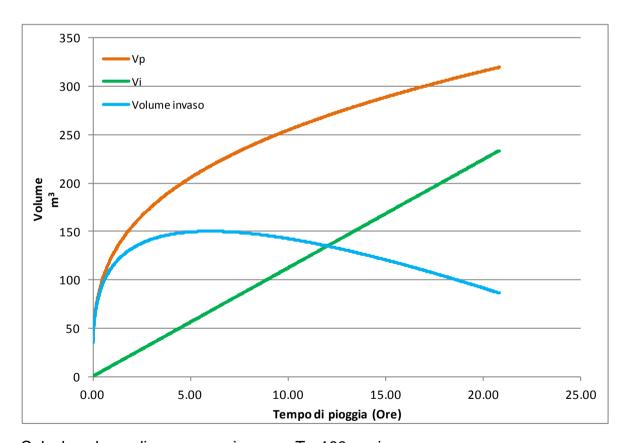
Data l'accessibilità al materasso ghiaioso dotato di buone caratteristiche drenanti, si ipotizza che il volume di laminazione possa essere ridotto utilizzando dispositivi di infiltrazione nel terreno. È ipotizzabile eventuale recapito su corpo idrico superficiale, previa verifica delle quote ed in accordo con le disposizioni impartite dal competente Consorzio di Bonifica.



Estratto Ortofoto – anno 2010-2011 scala 1:5000

a [mm/ore-n] 61.50 n 0.31 φ 0.59 S [m²] 3113.10 0.31131 Qout 10 l/s,ha

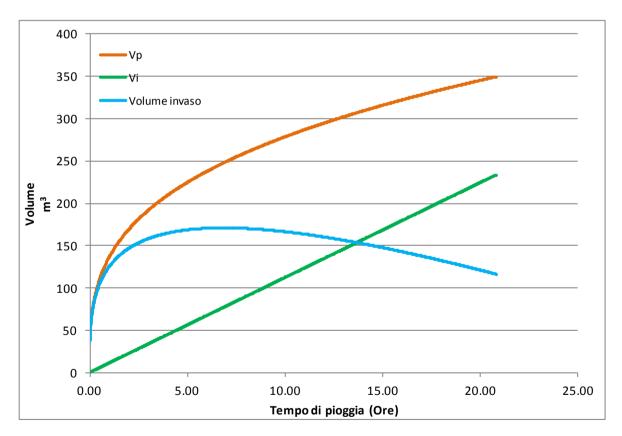
tp [min]	tp [ore]	h [mm]	u[l/s,ha]	Q [m ³ /s]	Vp[m³]	Vi[m³]	∆V[m³]
5	0.08	28.47	560.28	0.174	52	1	51
10	0.17	35.29	347.29	0.108	65	2	63
20	0.33	43.75	215.27	0.067	80	4	77
40	0.67	54.24	133.44	0.042	100	7	92
80	1.33	67.24	82.71	0.026	124	15	109
160	2.67	83.35	51.27	0.016	153	30	123
320	5.33	103.33	31.78	0.010	190	60	130
500	8.33	118.67	23.36	0.007	218	93	125
1000	16.67	147.11	14.48	0.005	270	187	84



Calcolo volume di compensazione per Tr=50 anni

a [mm/ore-n] 67.86 n 0.31 φ 0.59 S [m²] 3113.10 0.31131 Qout 10 l/s,ha

tp [min]	tp [ore]	h [mm]	u[l/s,ha]	Q [m ³ /s]	Vp[m³]	Vi[m³]	∆V[m³]
5	0.08	31.41	618.22	0.192	58	1	57
10	0.17	38.94	383.21	0.119	72	2	70
20	0.33	48.27	237.53	0.074	89	4	85
40	0.67	59.84	147.24	0.046	110	7	103
80	1.33	74.19	91.26	0.028	136	15	121
160	2.67	91.97	56.57	0.018	169	30	139
320	5.33	114.02	35.07	0.011	210	60	150
500	8.33	130.94	25.77	0.008	241	93	147
1000	16.67	162.33	15.97	0.005	298	187	112



Calcolo volume di compensazione per Tr=100 anni

a [mm/ore-n] 74.19
n 0.31
φ 0.59
S [m²] 3113.10 0.31131
Qout 10 l/s,ha

tp [min]	tp [ore]	h [mm]	u[l/s,ha]	Q [m ³ /s]	Vp[m³]	Vi[m³]	∆V[m³]
5	0.08	34.34	675.89	0.210	63	1	62
10	0.17	42.57	418.95	0.130	78	2	76
20	0.33	52.78	259.69	0.081	97	4	93
40	0.67	65.43	160.97	0.050	120	7	113
80	1.33	81.11	99.78	0.031	149	15	134
160	2.67	100.55	61.85	0.019	185	30	155
320	5.33	124.66	38.34	0.012	229	60	169
500	8.33	143.15	28.18	0.009	263	93	170
1000	16.67	177.47	17.46	0.005	326	187	139

Calcolo volume di compensazione per Tr=200 anni

A.T.O. 3

Area 25

Destinazione attuale: agricola

Destinazione futura: residenziale

Caratteristiche geologiche e geomorfologiche

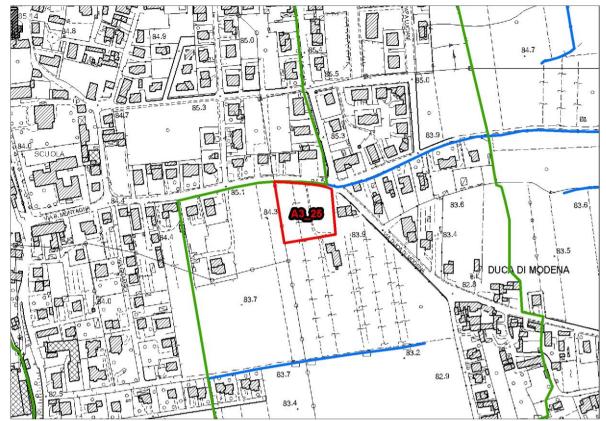
Zona pianeggiante; 1 ÷ 2 m di terreno limoso sabbioso su materasso ghiaioso-sabbioso prevalente, con grado di permeabilità medio-alto.

Caratteristiche idrogeologiche ed idrauliche attuali

Falda profonda 10 ÷ 15 m; non ipotizzabili fenomeni di esondazione o ristagno d'acqua.

Sottobacino scolante

-

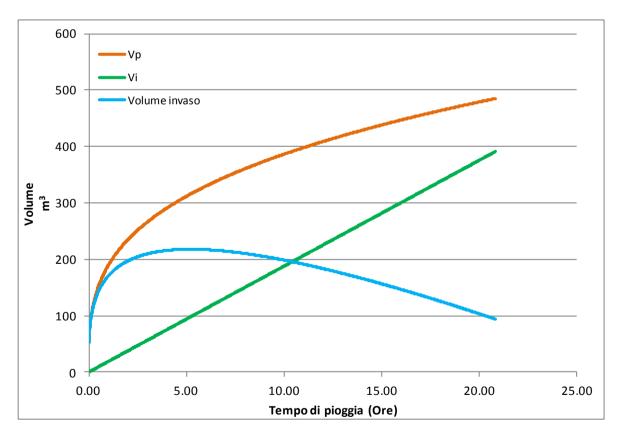

Misure di compensazione

АТО	Olarea		Esten		Classe di appartenenza		olume					
_		tot	totale trasformazione		nazione	(Allegato A D.G.R. 2948/2009)	Tr=50 anni Tr=100 anni Tr=2			Tr=20	0 anni	
		m²	ha	m²	ha		m³	m³/ha	m³	m³/ha	m³	m³/ha
3	25	5207	0.52	5207	0.52	Modesta impermeabilizzazione potenziale	218	418	251	482	286	549

Note

Data l'accessibilità al materasso ghiaioso dotato di buone caratteristiche drenanti, si ipotizza che il volume di laminazione possa essere ridotto utilizzando dispositivi di infiltrazione nel terreno. È ipotizzabile eventuale recapito su corpo idrico superficiale, previa verifica delle quote ed in accordo con le disposizioni impartite dal competente Consorzio di Bonifica.

Estratto Carta Tecnica Regionale scala 1:5000



Estratto Ortofoto – anno 2010-2011 scala 1:5000

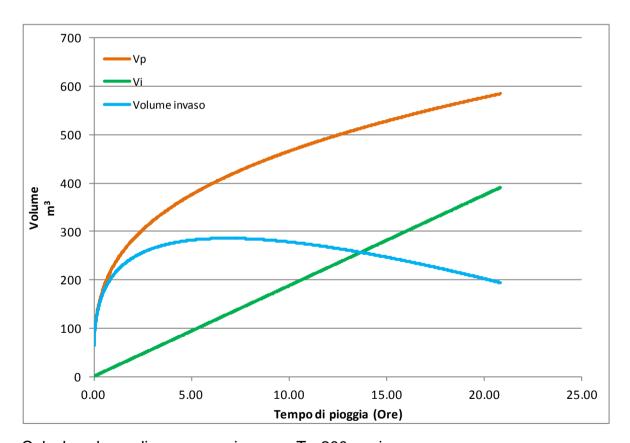
a [mm/ore-n] 61.50 n 0.31 φ 0.59 S [m²] 5207.10 0.52071 Qout 10 l/s,ha

tp [min]	tp [ore]	h [mm]	u[l/s,ha]	Q [m ³ /s]	Vp[m³]	Vi[m³]	∆V[m³]
5	0.08	28.47	560.28	0.292	88	2	86
10	0.17	35.29	347.29	0.181	109	3	105
20	0.33	43.75	215.27	0.112	135	6	128
40	0.67	54.24	133.44	0.069	167	12	154
80	1.33	67.24	82.71	0.043	207	25	182
160	2.67	83.35	51.27	0.027	256	50	206
320	5.33	103.33	31.78	0.017	318	100	218
500	8.33	118.67	23.36	0.012	365	156	209
1000	16.67	147.11	14.48	0.008	452	312	140

Calcolo volume di compensazione per Tr=50 anni

a [mm/ore-n] 67.86 n 0.31 φ 0.59 S [m²] 5207.10 0.52071 Qout 10 l/s,ha

tp [min]	tp [ore]	h [mm]	u[l/s,ha]	Q [m ³ /s]	Vp[m³]	Vi[m³]	∆V[m³]
5	0.08	31.41	618.22	0.322	97	2	95
10	0.17	38.94	383.21	0.200	120	3	117
20	0.33	48.27	237.53	0.124	148	6	142
40	0.67	59.84	147.24	0.077	184	12	172
80	1.33	74.19	91.26	0.048	228	25	203
160	2.67	91.97	56.57	0.029	283	50	233
320	5.33	114.02	35.07	0.018	351	100	251
500	8.33	130.94	25.77	0.013	403	156	246
1000	16.67	162.33	15.97	0.008	499	312	187



Calcolo volume di compensazione per Tr=100 anni

a [mm/ore-n] 74.19
n 0.31
φ 0.59
S [m²] 5207.10 0.52071
Qout 10 l/s,ha

tp [min]	tp [ore]	h [mm]	u[l/s,ha]	Q [m ³ /s]	Vp[m³]	Vi[m³]	∆V[m³]
5	0.08	34.34	675.89	0.352	106	2	104
10	0.17	42.57	418.95	0.218	131	3	128
20	0.33	52.78	259.69	0.135	162	6	156
40	0.67	65.43	160.97	0.084	201	12	189
80	1.33	81.11	99.78	0.052	249	25	224
160	2.67	100.55	61.85	0.032	309	50	259
320	5.33	124.66	38.34	0.020	383	100	283
500	8.33	143.15	28.18	0.015	440	156	284
1000	16.67	177.47	17.46	0.009	546	312	233

Calcolo volume di compensazione per Tr=200 anni

A.T.O. 3

Area 26

Destinazione attuale: agricola

Destinazione futura: residenziale

Caratteristiche geologiche e geomorfologiche

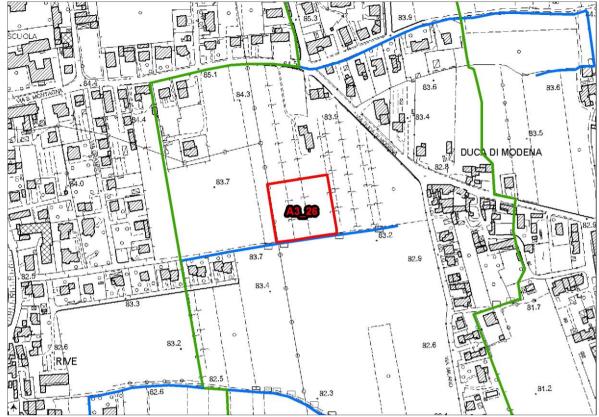
Zona pianeggiante; 1 ÷ 2 m di terreno limoso sabbioso su materasso ghiaioso-sabbioso prevalente, con grado di permeabilità medio-alto.

Caratteristiche idrogeologiche ed idrauliche attuali

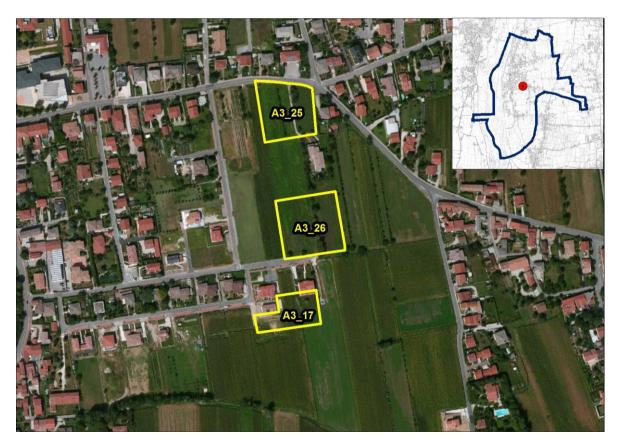
Falda profonda 10 ÷ 15 m; non ipotizzabili fenomeni di esondazione o ristagno d'acqua.

Sottobacino scolante

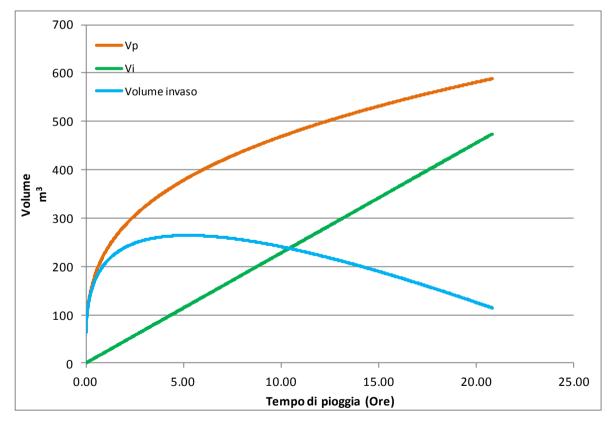
_


Misure di compensazione

ATO	area	Superficie Estensione		Classe di appartenenza	Volume di compensazione							
AIO	aica	tota	ale	trasformazione		(Allegato A D.G.R. 2948/2009)	Tr=50 anni Tr=100 anni Tr=200			0 anni		
		m²	ha	m²	ha		m³	m³/ha	m³	m³/ha	m³	m³/ha
3	26	6316	0.63	6316	0.63	Modesta impermeabilizzazione potenziale	264	418	305	482	347	549


Note

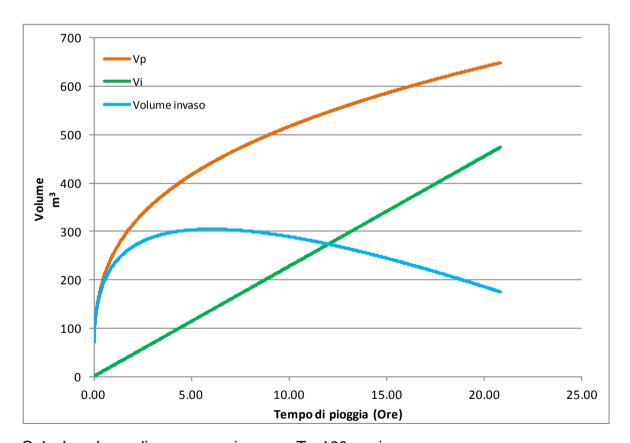
Data l'accessibilità al materasso ghiaioso dotato di buone caratteristiche drenanti, si ipotizza che il volume di laminazione possa essere ridotto utilizzando dispositivi di infiltrazione nel terreno.



Estratto Ortofoto – anno 2010-2011 scala 1:5000

a [mm/ore-n] 61.50
n 0.31
φ 0.59
S [m²] 6315.90 0.63159
Qout 10 l/s,ha

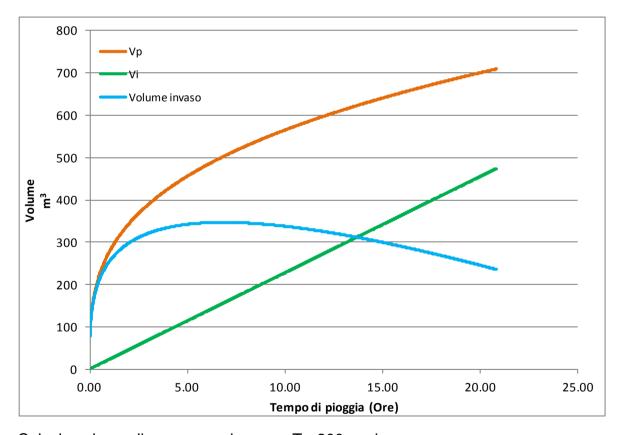
tp [min]	tp [ore]	h [mm]	u[l/s,ha]	Q [m ³ /s]	Vp[m³]	Vi[m³]	∆V[m³]
5	0.08	28.47	560.28	0.354	106	2	104
10	0.17	35.29	347.29	0.219	132	4	128
20	0.33	43.75	215.27	0.136	163	8	156
40	0.67	54.24	133.44	0.084	202	15	187
80	1.33	67.24	82.71	0.052	251	30	220
160	2.67	83.35	51.27	0.032	311	61	250
320	5.33	103.33	31.78	0.020	385	121	264
500	8.33	118.67	23.36	0.015	443	189	253
1000	16.67	147.11	14.48	0.009	549	379	170



Calcolo volume di compensazione per Tr=50 anni

a [mm/ore-n] 67.86 n 0.31 φ 0.59 S [m²] 6315.90 0.63159 Qout 10 l/s,ha

tp [min]	tp [ore]	h [mm]	u[l/s,ha]	Q [m ³ /s]	Vp[m³]	Vi[m³]	∆V[m³]
5	0.08	31.41	618.22	0.390	117	2	115
10	0.17	38.94	383.21	0.242	145	4	141
20	0.33	48.27	237.53	0.150	180	8	172
40	0.67	59.84	147.24	0.093	223	15	208
80	1.33	74.19	91.26	0.058	277	30	246
160	2.67	91.97	56.57	0.036	343	61	282
320	5.33	114.02	35.07	0.022	425	121	304
500	8.33	130.94	25.77	0.016	488	189	299
1000	16.67	162.33	15.97	0.010	605	379	226



Calcolo volume di compensazione per Tr=100 anni

a [mm/ore-n] 74.19
n 0.31
φ 0.59
S [m²] 6315.90 0.63159
Qout 10 l/s,ha

tp [min]	tp [ore]	h [mm]	u[l/s,ha]	Q [m ³ /s]	Vp[m³]	Vi[m³]	∆V[m³]
5	0.08	34.34	675.89	0.427	128	2	126
10	0.17	42.57	418.95	0.265	159	4	155
20	0.33	52.78	259.69	0.164	197	8	189
40	0.67	65.43	160.97	0.102	244	15	229
80	1.33	81.11	99.78	0.063	302	30	272
160	2.67	100.55	61.85	0.039	375	61	314
320	5.33	124.66	38.34	0.024	465	121	344
500	8.33	143.15	28.18	0.018	534	189	344
1000	16.67	177.47	17.46	0.011	662	379	283

Calcolo volume di compensazione per Tr=200 anni

A.T.O. 4

Area 20

Destinazione attuale: agricola

Destinazione futura: residenziale

Caratteristiche geologiche e geomorfologiche

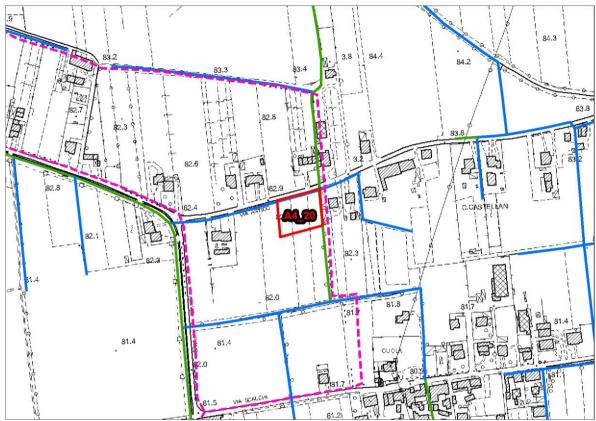
Zona pianeggiante; 1 ÷ 2 m di terreno limoso sabbioso su materasso ghiaioso-sabbioso prevalente, con grado di permeabilità medio-alto.

Caratteristiche idrogeologiche ed idrauliche attuali

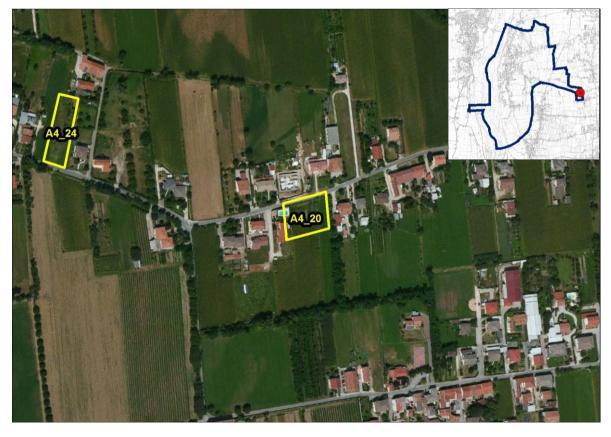
Falda profonda 15 ÷ 20 m; non ipotizzabili fenomeni di esondazione o ristagno d'acqua.

Sottobacino scolante

R. Bregon Sinistro (canale irriguo)

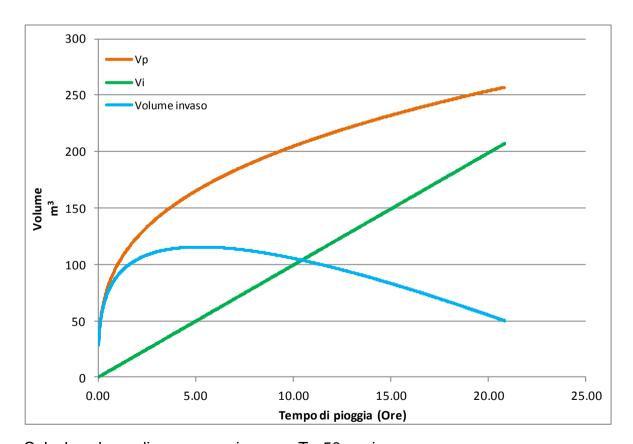

Misure di compensazione

АТО	area	Supe	rficie		sione	Classe di appartenenza	Volume di compensazione						
7110	u.ou	tot	totale trasformazione		nazione	(Allegato A D.G.R. 2948/2009)	Tr=50) anni	Tr=10	0 anni	Tr=20	0 anni	
		m²	ha	m²	ha		m³	m³/ha	m³	m³/ha	m³	m³/ha	
4	20	2761	0.28	2761	0.28	Modesta impermeabilizzazione potenziale	115	418	133	482	152	549	


Note

Data l'accessibilità al materasso ghiaioso dotato di buone caratteristiche drenanti, si ipotizza che il volume di laminazione possa essere ridotto utilizzando dispositivi di infiltrazione nel terreno. È ipotizzabile eventuale recapito su corpo idrico superficiale (R. Bregon Sinistro), previa verifica delle quote ed in accordo con le disposizioni impartite dal competente Consorzio di Bonifica.

Estratto Carta Tecnica Regionale scala 1:5000

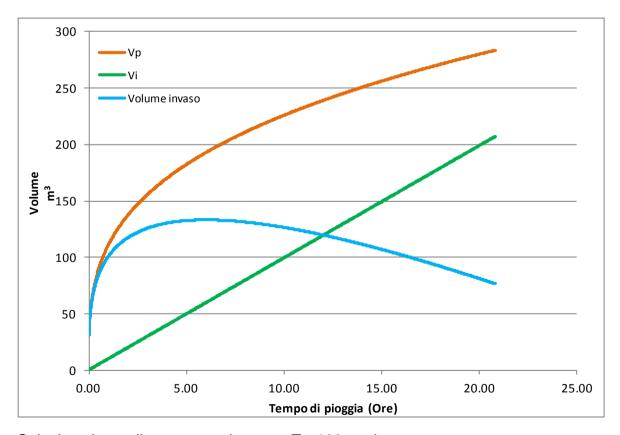


Estratto Ortofoto – anno 2010-2011 scala 1:5000

a [mm/ore-n] 61.50 n 0.31 φ 0.59 S [m²] 2760.50 0.27605 Qout 10 l/s,ha

tp [min]	tp [ore]	h [mm]	u[l/s,ha]	Q [m ³ /s]	Vp[m³]	Vi[m³]	∆V[m³]
5	0.08	28.47	560.28	0.155	46	1	46
10	0.17	35.29	347.29	0.096	58	2	56
20	0.33	43.75	215.27	0.059	71	3	68
40	0.67	54.24	133.44	0.037	88	7	82
80	1.33	67.24	82.71	0.023	110	13	96
160	2.67	83.35	51.27	0.014	136	27	109
320	5.33	103.33	31.78	0.009	168	53	115
500	8.33	118.67	23.36	0.006	193	83	111
1000	16.67	147.11	14.48	0.004	240	166	74

Calcolo volume di compensazione per Tr=50 anni

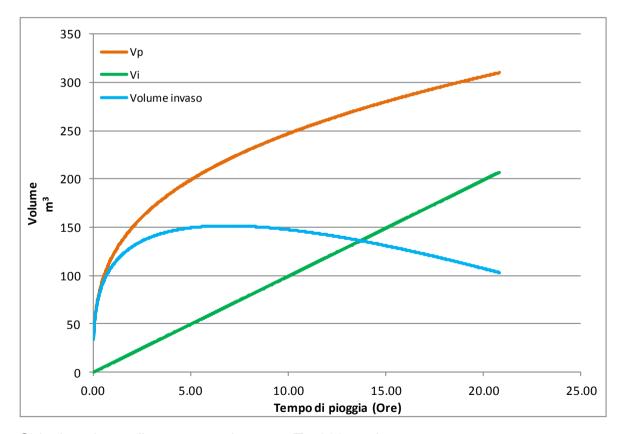


Qout

 $\begin{array}{ccc} \textbf{a [mm/ore-n]} & 67.86 \\ & \textbf{n} & 0.31 \\ & \boldsymbol{\phi} & 0.59 \\ & \textbf{S [m²]} & 2760.50 & 0.27605 \end{array}$

10 l/s,ha

tp [min]	tp [ore]	h [mm]	u[l/s,ha]	Q [m ³ /s]	Vp[m³]	Vi[m³]	∆V[m³]
5	0.08	31.41	618.22	0.171	51	1	50
10	0.17	38.94	383.21	0.106	63	2	62
20	0.33	48.27	237.53	0.066	79	3	75
40	0.67	59.84	147.24	0.041	98	7	91
80	1.33	74.19	91.26	0.025	121	13	108
160	2.67	91.97	56.57	0.016	150	27	123
320	5.33	114.02	35.07	0.010	186	53	133
500	8.33	130.94	25.77	0.007	213	83	131
1000	16.67	162.33	15.97	0.004	265	166	99



Calcolo volume di compensazione per Tr=100 anni

| mm/ore-i 74.19 | 0.31 | φ 0.59 | 0.59 | 0.27605 | Qout 10 l/s,ha

tp [min]	tp [ore]	h [mm]	u[l/s,ha]	Q [m³/s]	Vp[m³]	Vi[m³]	∆V[m³]
5	0.08	34.34	675.89	0.187	56	1	55
10	0.17	42.57	418.95	0.116	69	2	68
20	0.33	52.78	259.69	0.072	86	3	83
40	0.67	65.43	160.97	0.044	107	7	100
80	1.33	81.11	99.78	0.028	132	13	119
160	2.67	100.55	61.85	0.017	164	27	137
320	5.33	124.66	38.34	0.011	203	53	150
500	8.33	143.15	28.18	0.008	233	83	151
1000	16.67	177.47	17.46	0.005	289	166	124

Calcolo volume di compensazione per Tr=200 anni

A.T.O. 4

Area 21

Destinazione attuale: agricola

Destinazione futura: produttiva

Caratteristiche geologiche e geomorfologiche

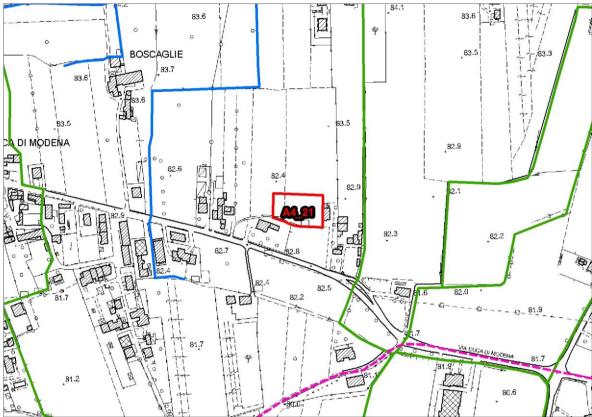
Zona pianeggiante; 1 ÷ 2 m di terreno limoso sabbioso su materasso ghiaioso-sabbioso prevalente, con grado di permeabilità medio-alto.

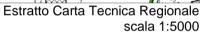
Caratteristiche idrogeologiche ed idrauliche attuali

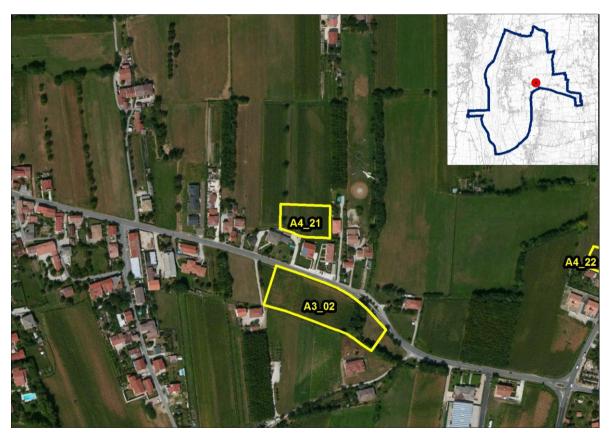
Falda profonda 10 ÷ 15 m; non ipotizzabili fenomeni di esondazione o ristagno d'acqua.

Sottobacino scolante

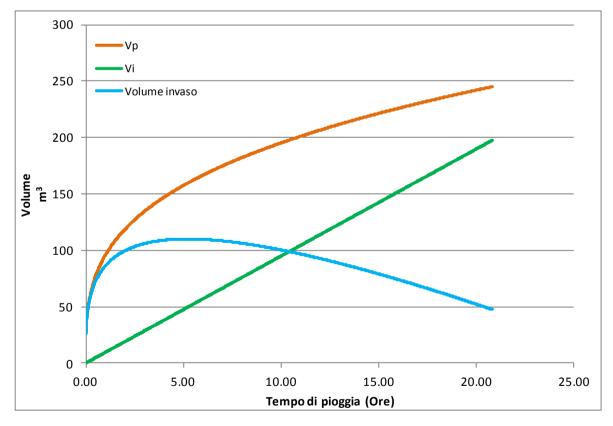
Roggia Cartigliana 3 (canale irriguo)


Misure di compensazione


АТО	area		rficie			Classe di appartenenza	Volume di compensazione Tr=50 anni Tr=100 anni Tr=200 anni						
		tot	otale trasformazione		nazione	(Allegato A D.G.R. 2948/2009)	Tr=50) anni	Tr=10	0 anni	Tr=20	0 anni	
		m²	ha	m²	ha		m³	m³/ha	m³	m³/ha	m³	m³/ha	
4	21	2631	0.26	2631	0.26	Modesta impermeabilizzazione potenziale	110	418	127	482	144	549	


Note

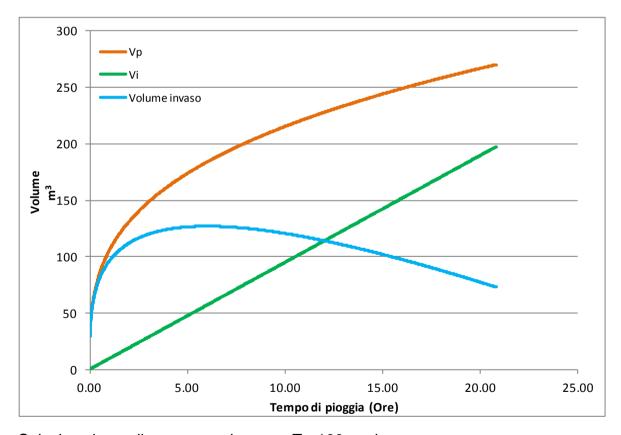
Data l'accessibilità al materasso ghiaioso dotato di buone caratteristiche drenanti, si ipotizza che il volume di laminazione possa essere ridotto utilizzando dispositivi di infiltrazione nel terreno. È ipotizzabile eventuale recapito su corpo idrico superficiale (Roggia Cartigliana 3), previa verifica delle quote ed in accordo con le disposizioni impartite dal competente Consorzio di Bonifica.



Estratto Ortofoto – anno 2010-2011 scala 1:5000

a [mm/ore-n] 61.50
n 0.31
φ 0.59
S [m²] 2630.90 0.26309
Qout 10 l/s,ha

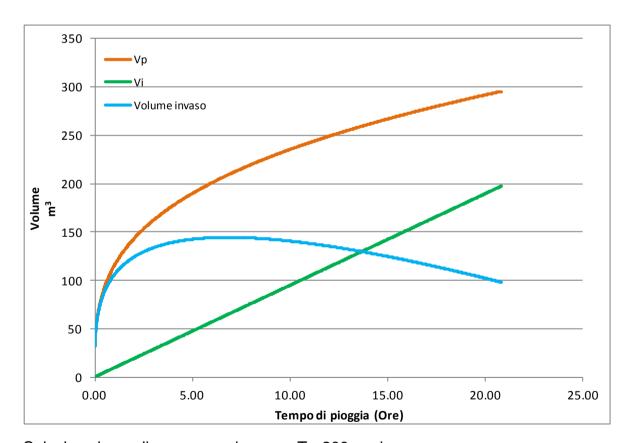
tp [min]	tp [ore]	h [mm]	u[l/s,ha]	Q [m ³ /s]	Vp[m³]	Vi[m³]	∆V[m³]
5	0.08	28.47	560.28	0.147	44	1	43
10	0.17	35.29	347.29	0.091	55	2	53
20	0.33	43.75	215.27	0.057	68	3	65
40	0.67	54.24	133.44	0.035	84	6	78
80	1.33	67.24	82.71	0.022	104	13	92
160	2.67	83.35	51.27	0.013	129	25	104
320	5.33	103.33	31.78	0.008	161	51	110
500	8.33	118.67	23.36	0.006	184	79	105
1000	16.67	147.11	14.48	0.004	229	158	71



Calcolo volume di compensazione per Tr=50 anni

a [mm/ore-n] 67.86 n 0.31 φ 0.59 S [m²] 2630.90 0.26309 Qout 10 l/s,ha

tp [min]	tp [ore]	h [mm]	u[l/s,ha]	Q [m ³ /s]	Vp[m³]	Vi[m³]	$\Delta V[m^3]$
5	0.08	31.41	618.22	0.163	49	1	48
10	0.17	38.94	383.21	0.101	60	2	59
20	0.33	48.27	237.53	0.062	75	3	72
40	0.67	59.84	147.24	0.039	93	6	87
80	1.33	74.19	91.26	0.024	115	13	103
160	2.67	91.97	56.57	0.015	143	25	118
320	5.33	114.02	35.07	0.009	177	51	127
500	8.33	130.94	25.77	0.007	203	79	124
1000	16.67	162.33	15.97	0.004	252	158	94



Calcolo volume di compensazione per Tr=100 anni

a [mm/ore-n] 74.19
n 0.31
φ 0.59
S [m²] 2630.90 0.26309
Qout 10 l/s,ha

tp [min]	tp [ore]	h [mm]	u[l/s,ha]	Q [m ³ /s]	Vp[m³]	Vi[m³]	∆V[m³]
5	0.08	34.34	675.89	0.178	53	1	53
10	0.17	42.57	418.95	0.110	66	2	65
20	0.33	52.78	259.69	0.068	82	3	79
40	0.67	65.43	160.97	0.042	102	6	95
80	1.33	81.11	99.78	0.026	126	13	113
160	2.67	100.55	61.85	0.016	156	25	131
320	5.33	124.66	38.34	0.010	194	51	143
500	8.33	143.15	28.18	0.007	222	79	143
1000	16.67	177.47	17.46	0.005	276	158	118

Calcolo volume di compensazione per Tr=200 anni

A.T.O. 4

Area 22

Destinazione attuale: agricola

Destinazione futura: residenziale

Caratteristiche geologiche e geomorfologiche

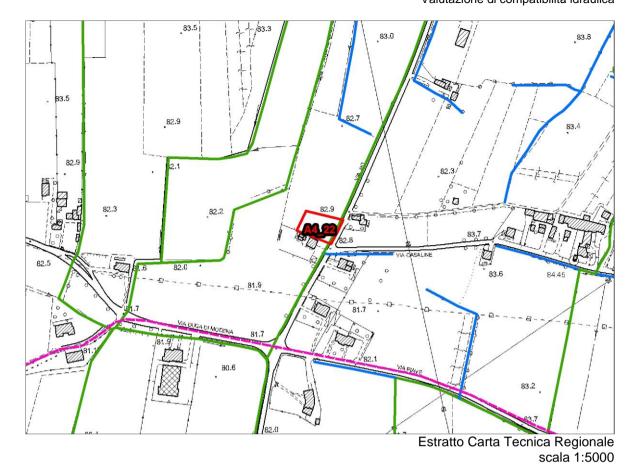
Zona pianeggiante; 1 ÷ 2 m di terreno limoso sabbioso su materasso ghiaioso-sabbioso prevalente, con grado di permeabilità medio-alto.

Caratteristiche idrogeologiche ed idrauliche attuali

Falda profonda 10 ÷ 15 m; non ipotizzabili fenomeni di esondazione o ristagno d'acqua.

Sottobacino scolante

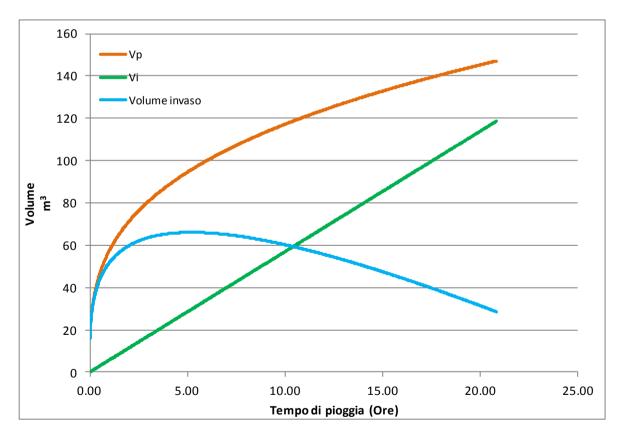
R. Bregon Destro


Misure di compensazione

ΔΤΩ	area	Supe	rficie	Esten	sione	Classe di appartenenza	Volume di compensazione						
AIO	arca	tot	ale trasformazione		nazione	(Allegato A D.G.R. 2948/2009)	Tr=50	anni (Tr=10	0 anni	Tr=20	0 anni	
		m²	ha	m²	ha		m³	m³/ha	m³	m³/ha	m³	m³/ha	
4	22	1579	0.16	1579	0.16	Modesta impermeabilizzazione potenziale	66	418	76	482	87	549	

Note

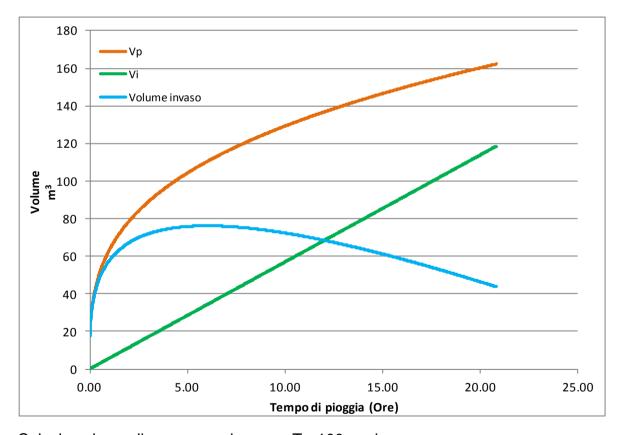
Data l'accessibilità al materasso ghiaioso dotato di buone caratteristiche drenanti, si ipotizza che il volume di laminazione possa essere ridotto utilizzando dispositivi di infiltrazione nel terreno. È ipotizzabile eventuale recapito su corpo idrico superficiale (R. Bregon Destron), previa verifica delle quote ed in accordo con le disposizioni impartite dal competente Consorzio di Bonifica.



Estratto Ortofoto – anno 2010-2011 scala 1:5000

a [mm/ore-n] 61.50
n 0.31
φ 0.59
S [m²] 1579.30 0.15793
Qout 10 l/s,ha

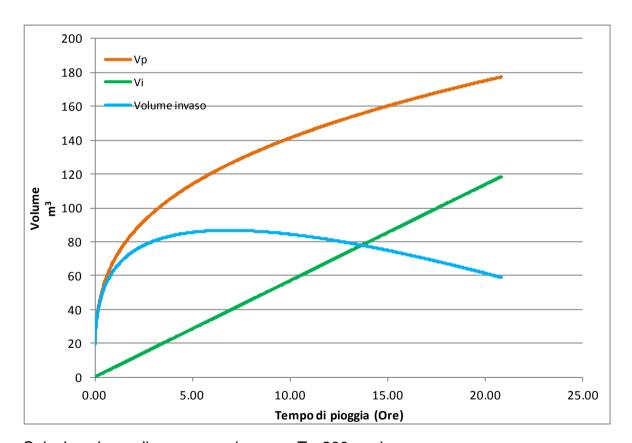
tp [min]	tp [ore]	h [mm]	u[l/s,ha]	Q [m ³ /s]	Vp[m³]	Vi[m³]	∆V[m³]
5	0.08	28.47	560.28	0.088	27	0	26
10	0.17	35.29	347.29	0.055	33	1	32
20	0.33	43.75	215.27	0.034	41	2	39
40	0.67	54.24	133.44	0.021	51	4	47
80	1.33	67.24	82.71	0.013	63	8	55
160	2.67	83.35	51.27	0.008	78	15	63
320	5.33	103.33	31.78	0.005	96	30	66
500	8.33	118.67	23.36	0.004	111	47	63
1000	16.67	147.11	14.48	0.002	137	95	42



Calcolo volume di compensazione per Tr=50 anni

a [mm/ore-n] 67.86 n 0.31 φ 0.59 S [m²] 1579.30 0.15793 Qout 10 l/s,ha

tp [min]	tp [ore]	h [mm]	u[l/s,ha]	Q [m ³ /s]	Vp[m³]	Vi[m³]	∆V[m³]
5	0.08	31.41	618.22	0.098	29	0	29
10	0.17	38.94	383.21	0.061	36	1	35
20	0.33	48.27	237.53	0.038	45	2	43
40	0.67	59.84	147.24	0.023	56	4	52
80	1.33	74.19	91.26	0.014	69	8	62
160	2.67	91.97	56.57	0.009	86	15	71
320	5.33	114.02	35.07	0.006	106	30	76
500	8.33	130.94	25.77	0.004	122	47	75
1000	16.67	162.33	15.97	0.003	151	95	57



Calcolo volume di compensazione per Tr=100 anni

a [mm/ore-n] 74.19
n 0.31
φ 0.59
S [m²] 1579.30 0.15793
Qout 10 l/s,ha

tp [min]	tp [ore]	h [mm]	u[l/s,ha]	Q [m ³ /s]	Vp[m³]	Vi[m³]	∆V[m³]
5	0.08	34.34	675.89	0.107	32	0	32
10	0.17	42.57	418.95	0.066	40	1	39
20	0.33	52.78	259.69	0.041	49	2	47
40	0.67	65.43	160.97	0.025	61	4	57
80	1.33	81.11	99.78	0.016	76	8	68
160	2.67	100.55	61.85	0.010	94	15	79
320	5.33	124.66	38.34	0.006	116	30	86
500	8.33	143.15	28.18	0.004	133	47	86
1000	16.67	177.47	17.46	0.003	165	95	71

Calcolo volume di compensazione per Tr=200 anni

A.T.O. 4

Area 23

Destinazione attuale: agricola

Destinazione futura: residenziale

Caratteristiche geologiche e geomorfologiche

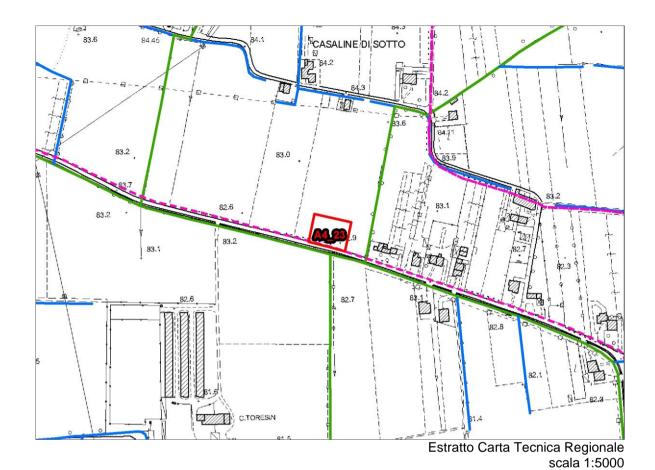
Zona pianeggiante; 1 ÷ 2 m di terreno limoso sabbioso su materasso ghiaioso-sabbioso prevalente, con grado di permeabilità medio-alto.

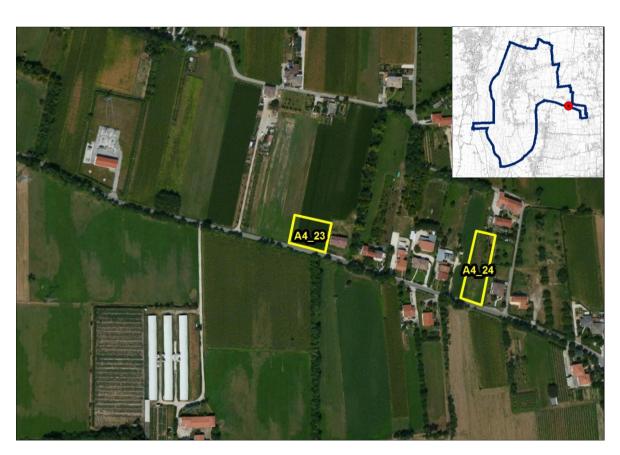
Caratteristiche idrogeologiche ed idrauliche attuali

Falda profonda 15 ÷ 20 m; non ipotizzabili fenomeni di esondazione o ristagno d'acqua.

Sottobacino scolante

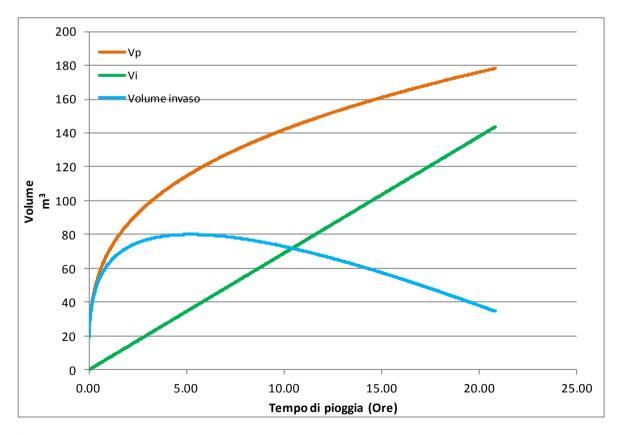
R. Bregon Destro (canale irriguo)


Misure di compensazione


ΔΤΩ	ATO area		rficie	Estensione		Classe di appartenenza	Volume di compensazione						
Α.Ο	uicu	totale		trasform	nazione	(Allegato A D.G.R. 2948/2009)) anni	Tr=10	0 anni	Tr=20	0 anni	
		m²	ha	m²	ha		m³	m³/ha	m³	m³/ha	m³	m³/ha	
4	23	1914	0.19	1914	0.19	Modesta impermeabilizzazione potenziale	80	418	92	482	105	549	

Note

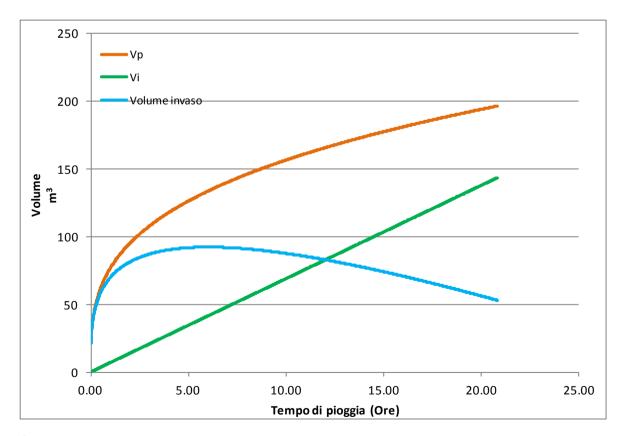
Data l'accessibilità al materasso ghiaioso dotato di buone caratteristiche drenanti, si ipotizza che il volume di laminazione possa essere ridotto utilizzando dispositivi di infiltrazione nel terreno. È ipotizzabile eventuale recapito su corpo idrico superficiale (R. Bregon Destro), previa verifica delle quote ed in accordo con le disposizioni impartite dal competente Consorzio di Bonifica.


Estratto Ortofoto – anno 2010-2011 scala 1:5000

a [mm/ore-n] 61.50 n 0.31 φ 0.59

S [m²] 1913.60 0.19136 **Qout** 10 l/s,ha

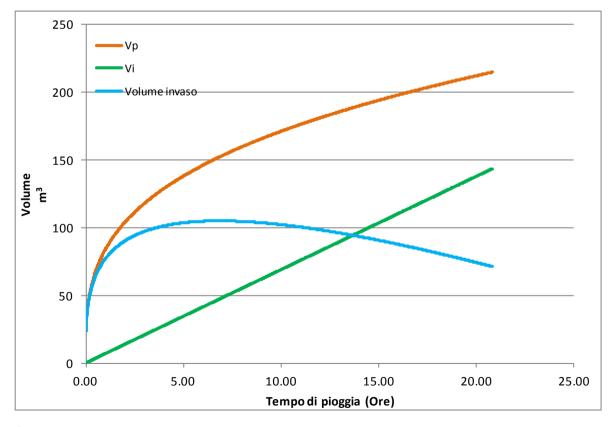
tp [min]	tp [ore]	h [mm]	u[l/s,ha]	Q [m ³ /s]	Vp[m³]	Vi[m³]	∆V[m³]
5	0.08	28.47	560.28	0.107	32	1	32
10	0.17	35.29	347.29	0.066	40	1	39
20	0.33	43.75	215.27	0.041	49	2	47
40	0.67	54.24	133.44	0.026	61	5	57
80	1.33	67.24	82.71	0.016	76	9	67
160	2.67	83.35	51.27	0.010	94	18	76
320	5.33	103.33	31.78	0.006	117	37	80
500	8.33	118.67	23.36	0.004	134	57	77
1000	16.67	147.11	14.48	0.003	166	115	51



Calcolo volume di compensazione per Tr=50 anni

a [mm/ore-n] 67.86 n 0.31 φ 0.59 S [m²] 1913.60 0.19136 Qout 10 l/s,ha

tp [min]	tp [ore]	h [mm]	u[l/s,ha]	Q [m ³ /s]	Vp[m³]	Vi[m³]	∆V[m³]
5	0.08	31.41	618.22	0.118	35	1	35
10	0.17	38.94	383.21	0.073	44	1	43
20	0.33	48.27	237.53	0.045	55	2	52
40	0.67	59.84	147.24	0.028	68	5	63
80	1.33	74.19	91.26	0.017	84	9	75
160	2.67	91.97	56.57	0.011	104	18	86
320	5.33	114.02	35.07	0.007	129	37	92
500	8.33	130.94	25.77	0.005	148	57	91
1000	16.67	162.33	15.97	0.003	183	115	69



Calcolo volume di compensazione per Tr=100 anni

a [mm/ore-n] 74.19 n 0.31 φ 0.59 S [m²] 1913.60 0.19136 Qout 10 l/s,ha

tp [min]	tp [ore]	h [mm]	u[l/s,ha]	Q [m ³ /s]	Vp[m³]	Vi[m³]	∆V[m³]
5	0.08	34.34	675.89	0.129	39	1	38
10	0.17	42.57	418.95	0.080	48	1	47
20	0.33	52.78	259.69	0.050	60	2	57
40	0.67	65.43	160.97	0.031	74	5	69
80	1.33	81.11	99.78	0.019	92	9	82
160	2.67	100.55	61.85	0.012	114	18	95
320	5.33	124.66	38.34	0.007	141	37	104
500	8.33	143.15	28.18	0.005	162	57	104
1000	16.67	177.47	17.46	0.003	201	115	86

Calcolo volume di compensazione per Tr=200 anni

A.T.O. 4

Area 24

Destinazione attuale: agricola

Destinazione futura: residenziale

Caratteristiche geologiche e geomorfologiche

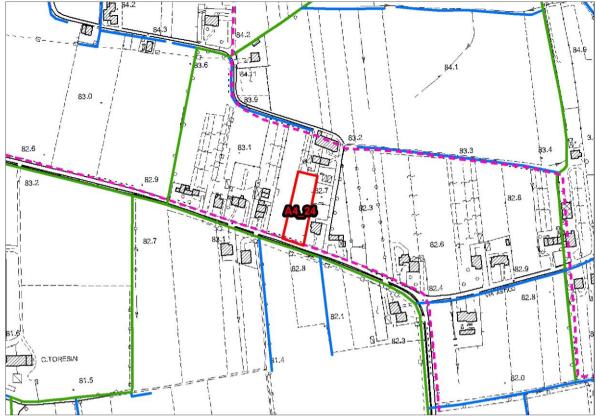
Zona pianeggiante; 1 ÷ 2 m di terreno limoso sabbioso su materasso ghiaioso-sabbioso prevalente, con grado di permeabilità medio-alto.

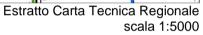
Caratteristiche idrogeologiche ed idrauliche attuali

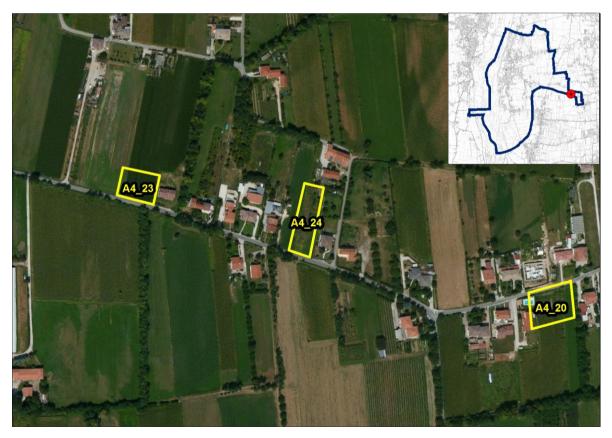
Falda profonda 15 ÷ 20 m; non ipotizzabili fenomeni di esondazione o ristagno d'acqua.

Sottobacino scolante

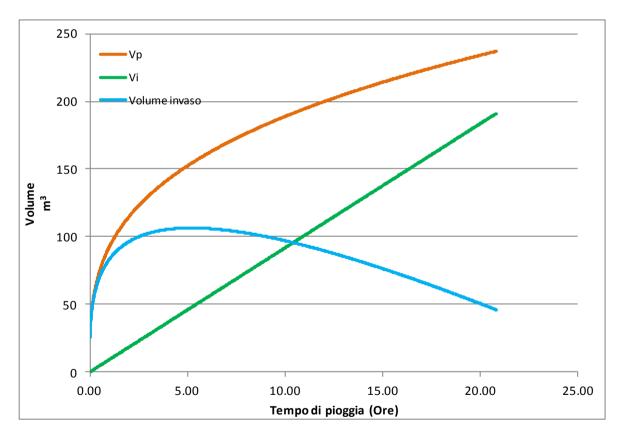
R. Livelloni


Misure di compensazione


ATO	ATO area Superficie totale		Estensione		Classe di appartenenza	Volume di compensazione						
AIO			trasforn	nazione	(Allegato A D.G.R. 2948/2009)) anni	Tr=10	0 anni	Tr=20	0 anni	
		m²	ha	m²	ha		m³	m³/ha	m³	m³/ha	m³	m³/ha
4	24	2545	0.25	2545	0.25	Modesta impermeabilizzazione potenziale	106	418	123	482	140	549


Note

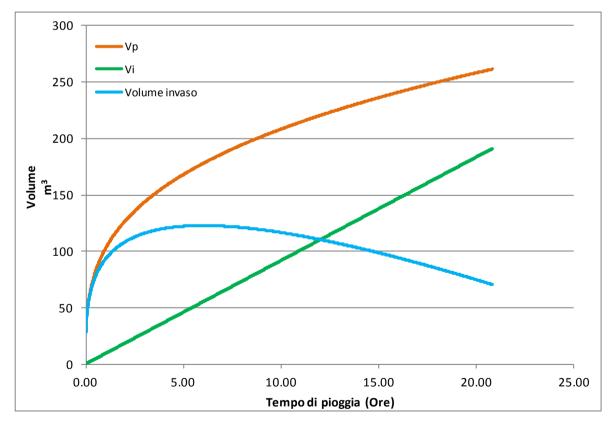
Data l'accessibilità al materasso ghiaioso dotato di buone caratteristiche drenanti, si ipotizza che il volume di laminazione possa essere ridotto utilizzando dispositivi di infiltrazione nel terreno. È ipotizzabile eventuale recapito su corpo idrico superficiale (R. Livelloni), previa verifica delle quote ed in accordo con le disposizioni impartite dal competente Consorzio di Bonifica.



Estratto Ortofoto – anno 2010-2011 scala 1:5000

a [mm/ore-n] 61.50
n 0.31
φ 0.59
S [m²] 2545.00 0.2545
Qout 10 l/s,ha

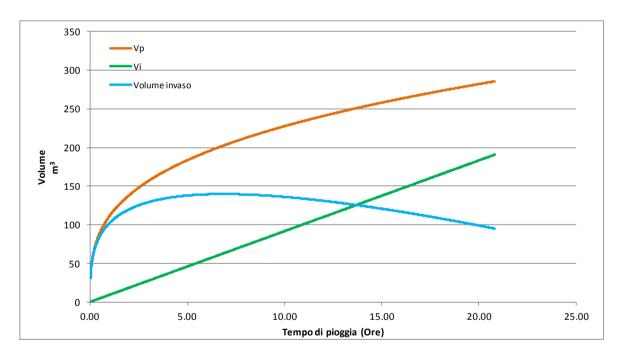
tp [min]	tp [ore]	h [mm]	u[l/s,ha]	Q [m ³ /s]	Vp[m³]	Vi[m³]	∆V[m³]
5	0.08	28.47	560.28	0.143	43	1	42
10	0.17	35.29	347.29	0.088	53	2	52
20	0.33	43.75	215.27	0.055	66	3	63
40	0.67	54.24	133.44	0.034	82	6	75
80	1.33	67.24	82.71	0.021	101	12	89
160	2.67	83.35	51.27	0.013	125	24	101
320	5.33	103.33	31.78	0.008	155	49	106
500	8.33	118.67	23.36	0.006	178	76	102
1000	16.67	147.11	14.48	0.004	221	153	68



Calcolo volume di compensazione per Tr=50 anni

a [mm/ore-n] 67.86 n 0.31 φ 0.59 S [m²] 2545.00 0.2545 Qout 10 l/s,ha

tp [min]	tp [ore]	h [mm]	u[l/s,ha]	Q [m ³ /s]	Vp[m³]	Vi[m³]	∆V[m³]
5	0.08	31.41	618.22	0.157	47	1	46
10	0.17	38.94	383.21	0.098	59	2	57
20	0.33	48.27	237.53	0.060	73	3	69
40	0.67	59.84	147.24	0.037	90	6	84
80	1.33	74.19	91.26	0.023	111	12	99
160	2.67	91.97	56.57	0.014	138	24	114
320	5.33	114.02	35.07	0.009	171	49	122
500	8.33	130.94	25.77	0.007	197	76	120
1000	16.67	162.33	15.97	0.004	244	153	91



Calcolo volume di compensazione per Tr=100 anni

a [mm/ore-n] 74.19
n 0.31
φ 0.59
S [m²] 2545.00 0.2545
Qout 10 l/s,ha

tp [min]	tp [ore]	h [mm]	u[l/s,ha]	Q [m ³ /s]	Vp[m³]	Vi[m³]	∆V[m³]
5	0.08	34.34	675.89	0.172	52	1	51
10	0.17	42.57	418.95	0.107	64	2	62
20	0.33	52.78	259.69	0.066	79	3	76
40	0.67	65.43	160.97	0.041	98	6	92
80	1.33	81.11	99.78	0.025	122	12	110
160	2.67	100.55	61.85	0.016	151	24	127
320	5.33	124.66	38.34	0.010	187	49	138
500	8.33	143.15	28.18	0.007	215	76	139
1000	16.67	177.47	17.46	0.004	267	153	114

Calcolo volume di compensazione per Tr=200 anni